
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CREATING PROFILES FROM USER NETWORK
BEHAVIOR

by

Chad M. McDowell

September 2013

Thesis Advisor: Robert Beverly
Second Reader: Geoffrey Xie

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

18–9–2013 Master’s Thesis 19-09-2011—27-09-2013

CREATING PROFILES FROM USER NETWORK BEHAVIOR

Chad M. McDowell

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.IRB Protocol Number: N/A

The ability to identify network users based on their network behavior has both positive and negative implications. If users are tracked
on the Internet without their knowledge or permission, this could be interpreted as a serious violation of their privacy. If used,
however, as part of an organization’s network security measures, the ability to identify and verify users might assist in determining
whether one user is masquerading as a different user, or whether some user is exhibiting abnormal behavior that might precede
malicious insider activity. As a step toward enhancing network security, we investigate the use of DNS hostnames and destination IPs
for user identification, based on models of user behavior. Our results indicate that using DNS hostnames is a superior method of
modeling user behavior. Additionally, when filtering the data for regular accesses, the accuracies improve for both DNS hostnames
and destination IPs.

Network Behavior Profiles, User Identification

Unclassified Unclassified Unclassified UU 127

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

CREATING PROFILES FROM USER NETWORK BEHAVIOR

Chad M. McDowell
Lieutenant, United States Navy

B.S., North Dakota State University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Chad M. McDowell

Approved by: Robert Beverly
Thesis Advisor

Geoffrey Xie
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The ability to identify network users based on their network behavior has both positive and neg-
ative implications. If users are tracked on the Internet without their knowledge or permission,
this could be interpreted as a serious violation of their privacy. If used, however, as part of an
organization’s network security measures, the ability to identify and verify users might assist
in determining whether one user is masquerading as a different user, or whether some user is
exhibiting abnormal behavior that might precede malicious insider activity. As a step toward
enhancing network security, we investigate the use of DNS hostnames and destination IPs for
user identification, based on models of user behavior. Our results indicate that using DNS host-
names is a superior method of modeling user behavior. Additionally, when filtering the data for
regular accesses, the accuracies improve for both DNS hostnames and destination IPs.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 User Network Behavior Profiles . 2

1.2 Research Questions . 3

1.3 Significant Findings . 3

1.4 Thesis Structure . 4

2 Background and Related Work 5
2.1 The Insider Threat . 5

2.2 Behavioral Patterns . 5

2.3 Domain Name System . 6

2.4 Ways of Gathering Profiles . 7

2.5 Profiles Formed from Destination IPs 9

2.6 Profiles Formed from Information-gathering Software. 10

3 Methodology 13
3.1 Datasets . 13

3.2 Parsing Pcaps for Destination IPs . 13

3.3 Parsing Pcaps for DNS Queries. 14

3.4 DNS Modifications . 15

3.5 Tab Files . 17

3.6 Term Frequency-Inverse Document Frequency. 18

3.7 Training and Testing Time Periods 19

3.8 Classifiers . 21

3.9 Orange . 22

3.10 Lifetime . 23

vii

4 Results 27
4.1 CDFs for Access Lifetimes . 27

4.2 Ignoring or Retaining Specific Accesses 32

4.3 Unassisted Accuracy . 33

4.4 Orange: Daily Instances . 35

4.5 Orange: MDI . 68

4.6 Associated ASNs for Flow Data . 76

4.7 Profile Strength . 82

5 Conclusions and Future Work 89
5.1 Conclusions . 90

5.2 Future Work . 92

List of References 97

Initial Distribution List 101

viii

List of Figures

Figure 3.1 Graphic showing the sliding windows. Each node represents one day,
with shaded nodes indicating days included in a particular seven-day
window. Each window covers seven days, with start days on each day
of a week (the first through the seventh of this month). 24

Figure 4.1 Flow - CDF of standard and sliding-window lifetimes for src/dst and dst-
only accesses (5-14 May) . 28

Figure 4.2 DNS - CDF of standard and sliding-window lifetimes for src/hostname
and hostname-only DNS queries (5-14 May) 28

Figure 4.3 DNS - CDFs of sliding-window lifetimes for complete and modified
DNS queries (5-14 May) . 29

Figure 4.4 Day-to-day accuracy using tf-idf and cosine similarity on src/dst IPs with
unfiltered datasets (May 8-14). 34

Figure 4.5 Day-to-day accuracy using tf-idf and cosine similarity on src/dst IPs,
with test sets filtered to omit source and destination IPs not present in
the training sets (May 8-14). 35

Figure 4.6 Day-to-day Accuracy using unfiltered dst IPs (May 8-14). 37

Figure 4.7 Day-to-day Accuracy using unfiltered DNS queries (May 8-14). 37

Figure 4.8 Day-to-day Accuracy using unfiltered modified DNS queries (May 8-
14). 37

Figure 4.9 Day-to-day Accuracy (May 8-14) filtering training set for src/dst pair
sliding-window lifetimes < 371 sec, the bottom 50% of accesses. . . . 40

Figure 4.10 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/dst pair
sliding-window lifetimes < 371 sec, the bottom 50% of accesses. . . . 40

ix

Figure 4.11 Day-to-day Accuracy (May 8-14) filtering training set for dst-only sliding-
window lifetimes < 653 sec, the bottom 40% of accesses. 40

Figure 4.12 Day-to-day Accuracy (May 8-14) filtering train/test sets for dst-only sliding-
window lifetimes < 653 sec, the bottom 40% of accesses. 40

Figure 4.13 Day-to-day Accuracy (May 8-14) filtering training set for src/hostname
pair sliding-window lifetimes < 1446 sec, the bottom 60% of accesses. 41

Figure 4.14 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/host pair
sliding-window lifetimes < 1446 sec, the bottom 60% of accesses. . . . 41

Figure 4.15 Day-to-day Accuracy (May 8-14) filtering training set for host-only sliding-
window lifetimes < 97 sec, the bottom 57% of accesses. 41

Figure 4.16 Day-to-day Accuracy (May 8-14) filtering train/test sets for host-only
sliding-window lifetimes < 97 sec, the bottom 57% of accesses. 41

Figure 4.17 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/hostname pair sliding-window lifetimes < 88 sec, the bottom 50% of
accesses. 42

Figure 4.18 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for sr-
c/host pair sliding-window lifetimes < 88 sec, the bottom 50% of ac-
cesses. 42

Figure 4.19 Day-to-day Accuracy (May 8-14) filtering modified training set for host-
only sliding-window lifetimes < 62 sec, the bottom 60% of accesses. . 42

Figure 4.20 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for
host-only sliding-window lifetimes < 62 sec, the bottom 60% of accesses. 42

Figure 4.21 Day-to-day Accuracy (May 8-14) filtered training set for src/dst pair
sliding-window lifetimes > 6 days. 47

Figure 4.22 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/dst sliding-
window lifetimes > 6 days. 47

Figure 4.23 Day-to-day Accuracy (May 8-14) filtering training set for dst-only sliding-
window lifetimes > 6 days. 47

Figure 4.24 Day-to-day Accuracy (May 8-14) filtering train/test sets for dst-only sliding-
window lifetimes > 6 days. 47

Figure 4.25 Day-to-day Accuracy (May 8-14) filtered training set for src/dst pair
sliding-window lifetimes > 5 days. 48

x

Figure 4.26 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/dst sliding-
window lifetimes > 5 days. 48

Figure 4.27 Day-to-day Accuracy (May 8-14) filtering training set for dst-only sliding-
window lifetimes > 5 days. 48

Figure 4.28 Day-to-day Accuracy (May 8-14) filtering train/test sets for dst-only sliding-
window lifetimes > 5 days. 48

Figure 4.29 Day-to-day Accuracy (May 8-14) filtering training set for src/host pair
sliding-window lifetimes > 6 days. 49

Figure 4.30 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/host sliding-
window lifetimes > 6 days. 49

Figure 4.31 Day-to-day Accuracy (May 8-14) filtering training set for host-only sliding-
window lifetimes > 6 days. 49

Figure 4.32 Day-to-day Accuracy (May 8-14) filtering train/test sets for host-only
sliding-window lifetimes > 6 days. 49

Figure 4.33 Day-to-day Accuracy (May 8-14) filtering training set for src/host pair
slidinw-window lifetimes > 5 days. 50

Figure 4.34 Day-to-day Accuracy (May 8-14) filtering train/test sets for src/host sliding-
window lifetimes > 5 days. 50

Figure 4.35 Day-to-day Accuracy (May 8-14) filtering training set for host-only sliding-
window lifetimes > 5 days. 50

Figure 4.36 Day-to-day Accuracy (May 8-14) filtering train/test sets for host-only
sliding-window lifetimes > 5 days. 50

Figure 4.37 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host sliding-window lifetimes > 6 days. 51

Figure 4.38 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for sr-
c/host sliding-window lifetimes > 6 days. 51

Figure 4.39 Day-to-day Accuracy (May 8-14) filtering modified DNS training set for
host-only sliding-window lifetimes > 6 days. 51

Figure 4.40 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for
host-only sliding-window lifetimes > 6 days. 51

xi

Figure 4.41 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host sliding-window lifetimes > 5 days. 52

Figure 4.42 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for sr-
c/host sliding-window lifetimes > 5 days. 52

Figure 4.43 Day-to-day Accuracy (May 8-14) filtering training set for modified DNS
host-only sliding-window lifetimes > 5 days. 52

Figure 4.44 Day-to-day Accuracy (May 8-14) filtering modified train/test sets for
host-only sliding-window lifetimes >5 days. 52

Figure 4.45 Day-to-day Accuracy (May 8-14) filtering training set for src/dst pairs
that were seen at least 3 different days during the week. 57

Figure 4.46 Day-to-day Accuracy (May 8-14) filtering training/test sets for src/dst
pairs that were seen at least 3 different days during the week. 57

Figure 4.47 Day-to-day Accuracy (May 8-14) filtering training set for dst-only IPs
that were seen at least 3 different days during the week. 57

Figure 4.48 Day-to-day Accuracy (May 8-14) filtering training/test sets for dst-only
IPs that were seen at least 3 different days during the week. 57

Figure 4.49 Day-to-day Accuracy (May 8-14) filtering training set for src/dst pairs
that were seen at least 4 different days during the week. 58

Figure 4.50 Day-to-day Accuracy (May 8-14) filtering training/test sets for src/dst
pairs that were seen at least 4 different days during the week. 58

Figure 4.51 Day-to-day Accuracy (May 8-14) filtering training set for dst-only IPs
that were seen at least 4 different days during the week. 58

Figure 4.52 Day-to-day Accuracy (May 8-14) filtering training/test sets for dst-only
IPs that were seen at least 4 different days during the week. 58

Figure 4.53 Day-to-day Accuracy (May 8-14) filtering training set for src/dst pairs
that were seen at least 5 different days during the week. 59

Figure 4.54 Day-to-day Accuracy (May 8-14) filtering training/test sets for src/dst
pairs that were seen at least 5 different days during the week. 59

Figure 4.55 Day-to-day Accuracy (May 8-14) filtering training set for dst IPs that
were seen at least 5 different days during the week. 59

xii

Figure 4.56 Day-to-day Accuracy (May 8-14) filtering training/test sets for dst-only
IPs that were seen at least 5 different days during the week. 59

Figure 4.57 Day-to-day Accuracy (May 8-14) filtering training set for src/dst pairs
that were seen at least 6 different days during the week. 60

Figure 4.58 Day-to-day Accuracy (May 8-14) filtering training/test sets for dst-only
IPs that were seen at least 6 different days during the week. 60

Figure 4.59 Day-to-day Accuracy (May 8-14) filtering training set for dst-only IPs
that were seen at least 6 different days during the week. 60

Figure 4.60 Day-to-day Accuracy (May 8-14) filtering training/test sets for dst-only
IPs that were seen at least 6 different days during the week. 60

Figure 4.61 Day-to-day Accuracy (May 8-14) filtering training set for src/host pairs
that were seen at least 3 different days during the week. 61

Figure 4.62 Day-to-day Accuracy (May 8-14) filtering training/test sets for src/host
pairs that were seen at least 3 different days during the week. 61

Figure 4.63 Day-to-day Accuracy (May 8-14) filtering training set for hosts-only that
were seen at least 3 different days during the week. 61

Figure 4.64 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 3 different days during the week. 61

Figure 4.65 Day-to-day Accuracy (May 8-14) filtering training set for src/host pairs
that were seen at least 4 different days during the week. 62

Figure 4.66 Day-to-day Accuracy (May 8-14) filtering training/test sets for src/host
pairs that were seen at least 4 different days during the week. 62

Figure 4.67 Day-to-day Accuracy (May 8-14) filtering training set for hosts-only that
were seen at least 4 different days during the week. 62

Figure 4.68 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 4 different days during the week. 62

Figure 4.69 Day-to-day Accuracy (May 8-14) filtering training set for src/host pairs
that were seen at least 5 different days during the week. 63

Figure 4.70 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 5 different days during the week. 63

xiii

Figure 4.71 Day-to-day Accuracy (May 8-14) filtering training set for hosts-only that
were seen at least 5 different days during the week. 63

Figure 4.72 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 5 different days during the week. 63

Figure 4.73 Day-to-day Accuracy (May 8-14) filtering training set for src/host pairs
that were seen at least 6 different days during the week. 64

Figure 4.74 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 6 different days during the week. 64

Figure 4.75 Day-to-day Accuracy (May 8-14) filtering training set for hosts-only that
were seen at least 6 different days during the week. 64

Figure 4.76 Day-to-day Accuracy (May 8-14) filtering training/test sets for hosts-
only that were seen at least 6 different days during the week. 64

Figure 4.77 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host pairs that were seen at least 3 different days during the week. . . 65

Figure 4.78 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
src/host pairs that were seen at least 3 different days during the week. . 65

Figure 4.79 Day-to-day Accuracy (May 8-14) filtering modified training set for hosts-
only that were seen at least 3 different days during the week. 65

Figure 4.80 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
hosts-only that were seen at least 3 different days during the week. . . 65

Figure 4.81 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host pairs that were seen at least 4 different days during the week. . . 66

Figure 4.82 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
src/host pairs that were seen at least 4 different days during the week. . 66

Figure 4.83 Day-to-day Accuracy (May 8-14) filtering modified training set for hosts-
only that were seen at least 4 different days during the week. 66

Figure 4.84 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
hosts-only that were seen at least 4 different days during the week. . . 66

Figure 4.85 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host pairs that were seen at least 5 different days during the week. . . 67

xiv

Figure 4.86 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
src/host pairs that were seen at least 5 different days during the week. . 67

Figure 4.87 Day-to-day Accuracy (May 8-14) filtering modified training set for hosts-
only that were seen at least 5 different days during the week. 67

Figure 4.88 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
hosts-only that were seen at least 5 different days during the week. . . 67

Figure 4.89 Day-to-day Accuracy (May 8-14) filtering modified training set for sr-
c/host pairs that were seen at least 6 different days during the week. . . 68

Figure 4.90 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
src/host pairs that were seen at least 6 different days during the week. . 68

Figure 4.91 Day-to-day Accuracy (May 8-14) filtering modified training set for hosts-
only that were seen at least 6 different days during the week. 68

Figure 4.92 Day-to-day Accuracy (May 8-14) filtering modified training/test sets for
hosts-only that were seen at least 6 different days during the week. . . 68

Figure 4.93 Flow Accuracy using unfiltered MDI; all days (May 8-14) prior to the
test day are included in the training set. Numbers of daily instances are
indicated in parentheses. 71

Figure 4.94 DNS Accuracy using unfiltered MDI; all days (May 8-14) prior to the
test day are included in the training set. Number of daily instances are
indicated in parentheses. 71

Figure 4.95 DNS (modified hostnames) Accuracy using unfiltered MDI; all days (May
8-14) prior to the test day are included in the training set. Number of
daily instances are indicated in parentheses. 71

Figure 4.96 MDI Flow Accuracy retaining only long-lived src/host pairs in both the
training and test sets (May 8-14). Numbers of daily instances are indi-
cated in parentheses. 75

Figure 4.97 MDI DNS Accuracy retaining only long-lived src/dst pairs in both the
training and test sets (May 8-14). Numbers of daily instances are indi-
cated in parentheses. 75

Figure 4.98 MDI DNS (mod) Accuracy retaining only long-lived src/host pairs in
both the training and test sets (May 8-14). Numbers of daily instances
are indicated in parentheses. 75

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

List of Tables

Table 3.1 Dataset statistics for May 8-14. Note that for flow traffic, the number of
packets is equal to the total number of dstIPs, as the pcaps were filtered
for TCP SYNs. The DNS pcaps were filtered for DNS queries, but only
retained A, AAAA, TXT, SRV, and MX records. 13

Table 3.2 Table representation of the map of maps container for flow traffic. . . . 14

Table 3.3 TYPE, value, and meaning for selected QTYPE fields 15

Table 3.4 Table representation of the map of maps container for DNS queries . . . 15

Table 3.5 Example format of an Orange tab file 18

Table 3.6 Example format of an Orange tab file with term frequency-inverse docu-
ment frequency (tf-idf) applied . 19

Table 3.7 Destination IPs A and C are recorded in the Wednesday-Tuesday sliding
window; dstIP B is recorded in the Thursday-Wednesday sliding window.
Dst IP A is not considered in the Thursday-Wednesday window. 24

Table 4.1 Sliding-window lifetimes for src/dst, src/hostname, dst-only, and hostname-
only, showing the time corresponding to the point at which the CDF ap-
pears to break away from the y-axis. 30

Table 4.2 Mean accuracy (percent) and mean number of sources and destinations
for unfiltered training and testing sets during the week of May 8-14. . . 36

Table 4.3 Mean daily accuracy after filtering out SL accesses (May 8-14). *Average
numbers of source and destination IPs are for filtered sets. 38

Table 4.4 Mean daily accuracy (percent) after filtering to keep LL accesses with
sliding-window lifetimes longer than 6 days (May 8-14). *Average num-
bers of sources and destinations are for the filtered sets. 43

xvii

Table 4.5 Mean daily accuracy (percent) after filtering to keep LL accesses with
sliding-window lifetimes longer than 5 days (May 8-14). *Average num-
bers of sources and destinations are for the filtered sets. 45

Table 4.6 Mean daily accuracy (percent) after filtering flow data to keep accesses
that were observed on at least 3, 4, 5, or 6 separate days (May 8-14).
*Average numbers of sources and destinations are for the filtered sets. . 53

Table 4.7 Mean daily accuracy (percent) after filtering DNS data to keep accesses
that were observed on at least 3, 4, 5, or 6 separate days (May 8-14).
*Average numbers of sources and destinations are for the filtered sets. . 54

Table 4.8 Mean daily accuracy (percent) after filtering modified flow data to keep
accesses that were observed on at least 3, 4, 5, or 6 separate days (May
8-14). *Average numbers of sources and destinations are for the filtered
sets. 55

Table 4.9 Accuracy (percent) using Multiple Daily Instances for the training sets
(May 8-14). The x-axis indicates the test day; the number in parentheses
is the number of daily instances (ranging from two when testing on Friday,
to six when testing on Tuesday. 69

Table 4.10 Flow Accuracy (percent) using Multiple Daily Instances filtering for flows
that have sliding-window lifetimes of six days or more (May 8-14). . . . 72

Table 4.11 DNS Accuracy (percent) using MDI filtering for DNS queries that have
sliding-window lifetimes of six days or more (May 8-14). 73

Table 4.12 DNS (mod) Accuracy (percent) using MDI filtering for modified DNS
hostnames having sliding-window lifetimes of six days or more (May 8-
14). 74

Table 4.13 Top 10 ASes for a one-week sliding window of all src/dst accesses (May
8-14). 78

Table 4.14 Top 10 ASes for short-lived destination IPs for a one-week sliding window
of src/dst pairs during May 8-14. 78

Table 4.15 Top 10 ASes for long-lived (more than 5 days) src/dst pairs for a one-week
sliding window during May 8-14. 79

Table 4.16 Top 10 ASes for a one-week sliding window of all dstIP accesses, irre-
spective of source IP (May 8-14). 80

xviii

Table 4.17 Top 10 ASes for short-lived destination IPs, irrespective of source IP, for
a one-week sliding window (May 8-14). 80

Table 4.18 Top 10 ASes for long-lived (more than 5 days) destination IPs, irrespective
of source IP, for a one-week sliding window (May 8-14). 80

Table 4.19 Differences between src/dst pairs and dst-only with the short-lived, long-
lived, and full Top 10 AS lists (May 8-14). 81

Table 4.20 Flow - mean, median, mode, mode count of the maximum number of
features that can be changed and still correctly identify the source IP. Also
shown are the total number of features and the number of sources that
were originally correctly predicted (May 8-14). 82

Table 4.21 Flow: statistics for the max number of features that can change and still
result in a correct source identification, retaining only LL sources with
sliding-window lifetimes > 6 days. Also shown are total number of fea-
tures and number of sources that were originally identified. 85

Table 4.22 Flow: statistics for the max number of features that can change and still
result in a correct source identification, retaining only sources active for
≥ 5 days. Also shown are total number of features and number of sources
that were originally identified. 86

Table 4.23 Flow: statistics for the max number of features that can change and still
result in a correct source identification, retaining only sources active for
≥ 6 days. Also shown are total number of features and number of sources
that were originally identified. 87

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

List of Acronyms and Abbreviations

AS Autonomous System
ASN Autonomous System Number
CDN Content Distribution Network
CDF Cumulative Distribution Function
CSU California State University
DNS Domain Name System
IP Internet Protocol
KNN K-Nearest Neigbors
MDI Multiple Daily Instances
NB Naïve Bayes
NPS Naval Postgraduate School
NSA National Security Agency
QNAME Query Name
QTYPE Query Type
RIR Regional Internet Registry
SYN Synchronize
TCP Transmission Control Protocol
tf-idf term frequency-inverse document frequency
UDP User Datagram Protocol
URL Uniform Resource Locator

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

Acknowledgements

This thesis was made possible by Professor Robert Beverly. I appreciate your guidance and
insight, as well as the time you devoted to helping me write the thesis. Thank you for the
opportunity to work with you. Thanks also to Professor Geoffrey Xie for providing feedback
and new ideas that enhanced the work we were doing.

To my family, thank you for understanding why I seemed to disappear for the last two years. I
appreciate your constant support, consideration, and love.

And to my amazing wife, Georgina, I am eternally grateful for your patience and understanding
during this time-consuming process. I know the last two years have not been easy for you. Your
unwavering support and unquestioning sacrifice are appreciated more than you know, and have
served as yet another reminder of how lucky I am to have you in my life.

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiv

CHAPTER 1:
Introduction

The ability to identify network users based on their network behavior has both positive and neg-
ative implications. If users are tracked on the Internet without their knowledge or permission,
this could be interpreted as a serious violation of their privacy. If used, however, as part of an
organization’s network security measures, the ability to identify and verify users might assist
in determining whether one user is masquerading as a different user, or whether some user is
exhibiting abnormal behavior that might precede malicious insider activity.

Identifying patterns of behavior in users is not a new concept. Some online retailers, such as
Amazon.com, try to discover patterns in user purchases in order to more effectively advertise
other products that the user may be interested in purchasing [1]. In doing so, they ostensibly
seek to enhance the user’s shopping experience, by allowing the user to discover items that the
user wishes to purchase. The benefit to the retailer is the potential for higher sales revenue.
User behavior is also tracked in less transparent ways, at least from the point of view of the
average user. Companies such as Doubleclick, a Google-owned business, can track users across
websites that have signed up to use Google’s Adsense service, helping the websites conduct
targeted advertising [2].

Tracking users based on behavior might also assist with attempting to mitigate or reduce the
insider threat, if conducted as part of a larger security posture for an organization. By assessing
the network behavior of users, one might be able to determine if a user’s network behavior
patterns do not match a historic pattern. The mismatch could imply that a user has logged
in with another user’s credentials, possibly to avoid attribution for certain network accesses.
Alternately, a deviation from past behavior might presage malicious activity by a disgruntled
user.

For example, in mid-2013, Edward Snowden revealed sensitive information about projects and
activities of the National Security Agency (NSA) [3]. While the full effects of his leaks are
still being assessed, his actions have created, if nothing else, a political and diplomatic embar-
rassment for the United States government. Employed for several years by defense contracting
firms that provide services to the NSA, Snowden was able to access vast amounts of top secret
information. It is not yet clear exactly when Snowden decided to become a malicious insider,

1

or whether there was a particular incident that prompted his actions. That said, having worked
as a contractor for the NSA for several years, Snowden likely did not start his career with the
intention of releasing classified information. If so, he was initially an honest employee and only
later, for reasons not yet fully known, decided to release the classified information.

Three years earlier, Bradley Manning, a Private First Class in the United States Army, was
arrested for leaking secret military and State Department information to WikiLeaks, a non-profit
organization that publishes leaks to its website. He admitted to downloading the information a
few months after his transfer to Afghanistan, where he obtained access to the material [4]. As
with Snowden, it appears that Manning did not begin his career with the intention of leaking,
only deciding to do so later.

1.1 User Network Behavior Profiles
In cases where an insider did not begin employment with the intention of conducting malicious
activity, since the insider was acting normally for most of their employment and only began
acting maliciously toward the end, it may be possible to generate a profile of normal behavior
for an individual user. This profile might allow for the detection of abnormal user behavior,
such as a sudden increase in accessing and downloading sensitive files, which could indicate
malicious activity.

Research by Banse et al. [5] and Yang [6] indicates that users do exhibit patterns in their network
behavior, and that network access profiles can be used to identify users. Their research is
discussed in more detail in Chapter 2. Banse et al. focused on DNS queries issued by each user,
and Yang worked with destination IP addresses. This thesis draws from aspects of the work by
Banse et al. and Yang.

For this thesis, we will be analyzing anonymized packet capture (pcap) files obtained from the
Naval Postgraduate School (NPS) network. The goal of our research is to investigate whether
focusing solely on user network access data will produce an accurate profile of user activity
on our dataset. We also seek to compare and contrast the accuracy of using DNS queries ver-
sus destination IP addresses on the same dataset. We will also investigate whether there is an
identifiable set of features that can, by themselves, uniquely identify a particular user. Addi-
tionally, we will investigate whether these profiles can be used to identify a user who begins to
act maliciously.

2

1.2 Research Questions
This thesis explores whether focusing on network access patterns to create network user profiles
can improve the ability to identify abnormal user behavior. In doing so, we investigate the
following:

• Will the accuracy of network user profiles be improved by associating a particular source
IP with the number of visits to unique destination IPs?
• How does the state of the art perform when applied to NPS network data?
• Are there specific discriminating features that can be shown to identify a particular user?
• Can the user profiles help identify abnormal behavior?

1.3 Significant Findings
The results of our analysis indicate that identification of users based on network traffic is ap-
plicable to Naval Postgraduate School (NPS) data, although the accuracy results are lower than
when considering residential networks. Our analysis revealed:

• Roughly half of all Transmission Control Protocol (TCP) Synchronizes (SYNs) from a
given source Internet Protocol (IP) were only issued during a single network session, and
were never issued again during the following seven-day period by that same source. Over
half of the Domain Name System (DNS) queries issued by a given source were never
queried again by that source in the next seven days.
• Roughly 40% of all TCP SYNs in the dataset were never sent again by any source during

the seven days following the initial web visit. About 60% of all DNS queries were only
issued during a single network session, and were never issued again by any source over
the next seven days.
• About 10% of SYNs were regularly issued by the same source over the course of seven

days. Similarly, about 10% of DNS queries were regularly issued by the same source over
the seven-day period.
• Approximately 30% of SYNs were regularly issued by at least one source for at least

seven days during the assessment period. About 10% of the DNS queries issued by any
source were regularly issued again by at least one source during the next seven days.
• Identification using DNS hostname queries was more accurate than using destination IP

addresses for all versions of tests we performed.

3

1.4 Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2 covers some of the background on the insider threat and discusses related work
in the area of creating user profiles based on network behavior.
• Chapter 3 discusses the methodology employed in this thesis, including how our profiles

were created.
• Chapter 4 provides the results of our experiments.
• Chapter 5 contains conclusions drawn from the results in Chapter 4 and recommended

future work.

4

CHAPTER 2:
Background and Related Work

This chapter provides an overview of malicious insiders, and current research in the area of user
network profiling and identification upon which this thesis is based.

2.1 The Insider Threat
The insider threat is a real and significant challenge facing public and private organizations to-
day [7]. Unlike external hackers, the insider does not need to gain access to the network, and
can often access sensitive information by logging on with company-issued credentials, e.g., a
username and password. As insiders are authorized users often accessing authorized systems,
the activity may not raise suspicion; the users may appear to be performing their normal jobs.
Bradley Manning did not conduct any hacking, but merely clicked onto the State Department
website on the government’s secret network and accessed the documents he chose to leak. While
it is not yet known whether Edward Snowden bypassed security controls to access the informa-
tion he leaked, he was clearly granted access to at least parts of the network. Because both men
were granted some form of access, intrusion detection systems would not have alerted, firewalls
would have been ineffective, and others would not necessarily think that the men were access-
ing the information for purposes of leaking it. They could have easily been seen as just doing
their jobs.

While Snowden and Manning have grabbed the headlines in the last few years, insiders are
clearly not limited to government employees wishing to leak classified information. A 2011
survey by the U.S. Secret Service, CERT Insider Threat Center, CSO Magazine, and Deloitte,
found that of cases when the perpetrator of a crime could be identified, 21% of the time it was an
insider, and 43% of the respondents reported experiencing an insider incident [8]. The average
cost of an insider incident is reportedly $412,000 per incident, and the average victim loses
about $15 million per year [9].

2.2 Behavioral Patterns
To mitigate the insider threat, CERT recommends some “best practices,” one of which is mon-
itoring and auditing employee actions [10]. One technique is to establish patterns of normal or
“good” network behavior by employees. These normal patterns might then be compared against

5

current behavior, to to see if there is a strong deviation between the two. If so, the user’s activity
might warrant additional scrutiny to see if the difference is due to benign factors, such as new
job tasking, or something more malignant.

These network behavior patterns may not help with insiders who conduct their malicious activ-
ities for a prolonged period of time, as their “bad” behavior would be included in their normal
pattern. But, studies by CERT have found that more than half of insiders who stole intellectual
property did at least some of their malicious behavior within 30 days of termination [11]. CERT
has also found that in 80% of cases of IT sabotage, the insider reached the “tipping point” (the
point at which they decided to become malicious) within 28 days of his activity [12].

The social aspect of why an employee turns to malicious activity supports the pattern of insiders
conducting malicious activity immediately prior to leaving a job. Some known reasons iden-
tified by CERT are financial compensation issues, a hostile work environment, problems with
supervisor, and being passed over for promotion [13]. As the disgruntled employee wishes to
get away from these negative (or perceived negative) factors, it makes sense that he or she would
end employment soon, and would conduct the risky malicious activity shortly before leaving.

It may be possible for some tech-savvy insiders to think of ways to circumvent or mitigate such
behavioral patterns, perhaps by hiding their behavior or gaining unauthorized access that cannot
be traced back to them. But CERT found that most insiders who steal intellectual property (for
example) do so using authorized access and are not technically sophisticated [11] [13].

Thus, for many insider attacks, it should be possible to create a historic pattern of good behavior
against which their behavior in their final days of employment can be compared. If abnormal
behavior is detected in their final days, it might indicate malicious activity. Furthermore, if the
behavioral patterns allow for a continual analysis of behavior regardless of termination date,
it might be possible to early-detect such insiders as Edward Snowden, whose termination date
was known only to him.

2.3 Domain Name System
The DNS is a naming system that translates names that humans can easily remember into IP
addresses that are used to locate network devices. This system removes the need for humans to
remember numerical IP addresses, allows the domain name to stay the same when IP addresses
change, and allows for multiple IP addresses to be associated with one domain name [14]. As
a common and simple example, to send a packet to another network device on the Internet, a

6

user types the domain name into a web browser. If the web browser does not have a cached
IP address for that device, the browser sends a DNS request to a DNS resolver to request the
IP address associated with the desired domain name. If the resolver does not have a cached IP
address for the desired name, the DNS resolver sends a DNS query to a DNS server [15]. If the
DNS server has the domain name and IP address in its database, it responds with the IP address.

2.3.1 DNS Query Fields Relevant to Our Analysis
RFC 1035 [15] describes the domain system and protocol. All DNS packets are divided into five
sections: Header, Question, Answer, Authority, and Additional. For our analysis, we focused
on two of the three fields found in the Question section, QNAME and QTYPE. The QNAME
holds a representation of the domain name for which an IP address is being sought, and the
QTYPE indicates the type of the query. The types of queries we focused on were A, AAAA,
TXT, SRV, and MX records, thinking that these types might reveal unique markers for user
network activity. The A records are used to obtain IPv4 addresses, and AAAA records are for
IPv6 addresses. A TXT record can be used for human-readable text in a DNS record. Service
records (SRV record) imply that the desired record is for a specified server. Finally, MX records
are mail exchange records, used for email servers.

2.4 Ways of Gathering Profiles
There are many ways to create user network behavior profiles. For our analysis, we focused on
using hostnames in DNS queries and destination IPs found in TCP SYN packets to build patterns
of user network behavior. This section describes related work on these and other methods.

2.4.1 Profiles Formed from DNS Queries
Closely related to the work in this thesis are publications by Banse et al. [5]. They worked on
associating a user with web activity, based solely on websites visited by the user. Taking the
point of view of a malicious observer, they collected DNS requests for a full-day to use as their
training set. To re-identify those users the following day, they used machine learning software
that employed a Multinomial Naïve Bayes classifier along with term-frequency and inverse-
document frequency weighting. If the highest probability corresponded to more than one user,
Banse et al. used the cosine similarity method to select the best fit.

The results of their research indicate that users do exhibit distinguishing behavioral character-
istics while using the network. Using a data set averaging over 2,100 daily concurrent users,
Banse et al. were able to correctly link 88.2% of user sessions, demonstrating that a curious

7

DNS resolver would be able to associate a user’s current browsing behavior with the same
user’s behavior on the previous days. Additionally, they showed that the accuracy held up even
for long gaps (up to 90 days) between the training set and the test set, suggesting that a user’s
behavioral pattern changes slowly.

One of the novel approaches taken by Banse et al. is that instead of considering the actual
destination IP addresses, they looked solely at DNS requests made by each source IP. This is
due in part to their desire to mimic an observer with access to a local DNS recursive resolver.
This approach offers a key advantage. Many popular web servers have multiple IP addresses,
for instance because they are hosted by a content distribution network, a fact that may hide
relationships if one is just looking at destination IP address. For example, if a user visits three
distinct IPs, but all are for the same online search engine, an analysis of destination IPs may
focus too much on the trees versus the forest. By considering only the DNS queries, [16] [5]
are able to assess the actual web sites that each user desires to visit.

A potential disadvantage to this technique is that multiple visits to a website may not incur
multiple DNS queries, due to DNS caching. Recognizing this, the authors also conducted tests
using a simulated cache with DNS records that expire at the end of each day. While this omits
multiple daily visits, the knowledge of which might yield value, their model still performed
well, with accuracy only dropping from 88.2% to 80.5%. Another downside to the DNS query
approach is that destination IPs not obtained via a DNS server, such as a networked printer or
other computer on the same network, are not included in the profile. It might be of value to know
if a user is suddenly accessing a printer far more often than normal, especially if combined with
other anomalous factors. Another possible disadvantage is that this technique requires visibility
into the user’s DNS traffic. If an analyst is using a network tap that is in the middle of the
network, the DNS queries may never be seen. There are several important differences between
the work done by Banse et al. and this thesis. Banse et al. focused on privacy concerns that
could result from being able to link anonymous user sessions. While they had access to the
identities of the users for validation purposes, their goal was not to demonstrate how to uncover
a user’s true identity, but rather to be able to associate multiple sessions with a given user,
whomever that person may be. This thesis, however, is intended to add to the body of research
focusing on malicious insiders. We take the point of view of a network administrator who knows
which IP address is assigned to which user, and desires to create a profile for each network user.
The ultimate goals are to identify anomalous behavior that could indicate malicious activity,
attempts to masquerade as a different user, or simply if Bob is using Alice’s computer without

8

her permission. Perhaps the biggest difference with this thesis and [16] [5] concerns the dataset.
Banse et al. investigated a residential network for university student housing. Their dataset of
DNS requests was populated from 4,153 university students who use the network both for their
studies and personal browsing. We hypothesize that a user’s browsing pattern at home will yield
more uniquely identifiable markers than when that same user is at work. For example, a user
might visit a certain news website throughout the day, while at home and at work. However, that
same user might not be inclined to read about celebrity gossip or watch streaming music videos
while at work, but might regularly do so at home. To that end, a 2008 study by Giroire et al.

compared user network behavior in distinct environments, such as inside the corporate network,
outside the network but using a VPN for access, and being completely outside the network [17].
Their study demonstrated that user behavior indeed varies depending on the user’s location.

In contrast to Banse et al., our dataset is from the Computer Science Department at the Naval
Postgraduate School. While some students certainly engage in personal browsing during a
break, they probably do not visit all the same websites with the same regularity as they might
when accessing the Internet from a computer at home. This means that there are likely fewer
observable unique markers in our dataset than for a residential network at a civilian university.
Thus, we believe our dataset more accurately reflects a corporate or government facility, which
is more in line with potential future application to the insider threat.

2.5 Profiles Formed from Destination IPs
Also related to this thesis are publications by Yang [6]. Yang’s work was one of the first to
focus on building user network profiles from web usage behavior. Using destination IPs visited
by users, she created compared the accuracy of three different profiling techniques. Her initial
method was to use Weka’s learning tree classifier to create user profiles. Yang’s other two
techniques were to construct profiles using the data mining methods of support and lift. By
using destination IP addresses, Yang is able to capture repeated visits to the same website, which
was not possible in the DNS approach discussed in §2.4.1. As with Banse et al., Yang is also
concerned about the privacy implications. While she allowed for the possibility of identifying
the actual users, the main thrust of her work was directed at privacy concerns for unsuspecting
web users.

Yang’s work demonstrated that user profiles created with the support and lift methods can be
more accurate than learning trees or support vector machines at identifying users. Running
tests with variable numbers of concurrent users and training sessions, Yang had three significant

9

findings. First, for a small number of users, the learning tree method was always most accurate,
with 99.30% accuracy for two users with 100 training sessions each. Next, for small numbers
of training sessions (but more than two users), the learning tree classifier was most accurate.
With one training session, Yang obtained an accuracy of 79.36% for 10 users and 62.90%
for 100 users; using 10 training sessions each, the accuracy increased to 90.72% for 10 users
and 81.01% for 100 users. Third, as the number of users and training sessions increased, the
support-based profiles dominated the accuracy results, with accuracy of 87.36% for 100 users
with 100 training sessions.

A major difference between Yang’s work and this thesis is with the characteristics of the
datasets. Of her initial large dataset, she created sub-datasets that consisted of at most 100
concurrent users [6]. It was also a closed-world environment, where users were only selected
if they had at least 300 sessions. Additionally, Yang’s impressive accuracy of up to 87% was
achieved with 100 training sessions per user. In contrast, our dataset contains a mean of 443
concurrent users for flow traffic, and a mean of 480 concurrent users for DNS traffic. In our
tests, we typically use one training session and we do not specifically filter out users with low-
levels of activity. Similar to Banse et al., our main training and test sets are composed of one
day each, with each day being considered one session, though we did investigate other combi-
nations, such as using training sessions formed from each hour in a day.

Another difference is that the users in her dataset were volunteers who agreed to participate in
the study. We believe that when one knows that one’s web behavior is being tracked, normal
patterns of behavior will be disrupted, at least a bit. If nothing else, some users may elect to
self-censor themselves by not visiting certain websites. In the dataset used for this thesis, it is
possible that the acceptable-use policy at the Naval Postgraduate School may have encouraged
some students to also self-censor, as the military is often quite strict in its enforcement of ac-
ceptable online behavior. That said, we believe that the behavior is more likely to be influenced
by the commuter status of all students, who can browse as they please after going home.

2.6 Profiles Formed from Information-gathering Software
Some of the related work in this field involves installing information-gathering software on
user’s computers to record various data, which is subsequently analyzed. For example, McKin-
ney and Reeves [18] used supervised learning techniques to analyze running processes on host
computers. Utilizing a Naïve Bayes classifier, they obtained a true positive rate of 96.7% and a
false rate of 0.4%.

10

Similarly, Udoeyop developed user profiles by applying k-means clustering and Kernel Den-
sity Estimation algorithms to information collected from host computers [19]. Analyzing data
about the host’s processor usage, memory usage, hard drive usage, process threads, file system
activity, destination IP addresses, and destination port numbers, Udoeyop developed average
nominal behavior probabilities for different scenarios in order to identify abnormal behavior.

While these approaches allow analysts to collect a great amount of data, it may not always be
practical to install monitoring programs on every authorized computer. Users accessing a cor-
porate or government network remotely from their personal computer may object to installing
the software, or they may develop ways to bypass the software. Another consideration with the
above research is that the users were volunteers. As indicated in §2.5, we believe that volunteers
may consciously or unconsciously alter their behavior. In contrast, this thesis seeks to identify
users without the use of information-gathering software.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

CHAPTER 3:
Methodology

The intent of this thesis was to compare the use of destination IP addresses and DNS queries
when attempting to identify users, based solely on network behavior. After collecting user
traffic in the form of packet capture (pcap) files, we parsed the traffic to extract the desired
data, and performed a tf-idf weighting. We wrote the output to a file formatted for input to
the Orange [20] data-mining software. We also performed several analytical variations, such
as omitting short-lived accesses, and keeping only long-lived accesses. This chapter describes
each of these steps in detail.

3.1 Datasets
The packet captures we obtained were in the form of pcap files collected from the Computer
Science building at the Naval Postgraduate School from 12:20 a.m. on May 8 through 12:20
a.m. on May 21. We used C++ with the libpcap library to parse the pcap files for either TCP
SYNs using port 80, or User Datagram Protocol (UDP) DNS messages on port 53, extracting
the destination IP addresses for the SYNs or hostname queries from the DNS messages, as
discussed in §3.2 and §3.3. Table 3.1 shows some descriptive information about the pcaps for
flow and dns traffic. The label dns(mod) indicates DNS queries that were modified as in §3.4.
The DNS pcaps did not included traffic from the local recursive resolver.

3.2 Parsing Pcaps for Destination IPs
For user identification using destination IP addresses, we filtered the port 80 traffic to select
only TCP SYN packets, i.e., packets with the SYN flag set to 1, and the ACK flag set to 0.
We filtered on SYN-only packets because our analysis was concerned with the number of visits

traffic snaplen total total unique total unique
type (bytes) bytes packets srcIPs dstIPs/queries dstIPs/queries
flow 60 408,581,400 5,521,368 640 5,521,368 26,858
dns 1500 576,950,791 5,630,004 611 5,328,788 103,497

dns (mod) 1500 576,950,791 5,630,004 611 5,328,788 50,521

Table 3.1: Dataset statistics for May 8-14. Note that for flow traffic, the number of packets is
equal to the total number of dstIPs, as the pcaps were filtered for TCP SYNs. The DNS pcaps
were filtered for DNS queries, but only retained A, AAAA, TXT, SRV, and MX records.

13

Source IP Destination IP # of SYNs
1.1.1.1 2.2.2.2 10

3.3.3.3 5
4.4.4.4 2

1.1.2.2 2.2.2.2 8
5.5.5.5 7
6.6.6.6 3

Table 3.2: Table representation of the map of maps container for flow traffic.

made to a website. We define “number of visits” to mean the number of TCP flows having the
same destination IP address. Had we included the SYN/ACK packets, a single visit to a website
with a large amount of data would have yielded more packets than a single visit to a website
with a small amount of data, even though the number of visits to both websites was to the same.
Additionally, focusing on SYN-only packets approximated Cisco’s NetFlow service, and has a
lower burden on resources than if we had collected all TCP packets. As client workstations do
not typically receive SYN packets, collecting SYN-only packets should yield traffic emanating
almost exclusively from user computers. Additionally, by choosing only the SYN packets, vice
the subsequent ACK packets, we only log one network access for each TCP session, regardless
of how many packets are sent during that individual TCP session. For each TCP SYN packet, we
used the C++ map container to track the number of times each source visited each destination
IP, by creating a map of maps:

map <uint32_t, map <uint32_t, uint32_t> > src_dst_map;

Table 3.2 shows a graphical representation of how the map of maps container stores the number
of SYN packets each source IP made to each destination IP address. The source and destination
IPs are notional, as are the number of SYNs.

3.3 Parsing Pcaps for DNS Queries
To use DNS queries for user identification, we selected only packets using the UDP transport
protocol and having a source port of 53. The tap for our packet collection was placed between
the clients and the local recursive resolver. Thus, collecting UDP on port 53 should yield only
DNS queries issued by the clients. For each DNS packet, we manually extracted the object
in the Query Name (QNAME) field from the message by skipping over the headers for the

14

TYPE Value Meaning
A 1 (IPv4) host address

MX 15 mail exchange
TXT 16 text strings
SRV 33 server selection

AAAA 28 (IPv6) host address

Table 3.3: TYPE, value, and meaning for selected QTYPE fields

Source IP QNAME # of queries
1.1.1.1 www.siteA.com 10

siteB.net 5
siteC.org 2

1.1.2.2 www.siteA.com 8
siteC.co.uk 7
siteD.com 3

Table 3.4: Table representation of the map of maps container for DNS queries

Ethernet, IP, UDP, and DNS protocols, and then retrieving the remaining bytes of the packet,
which constitute the object being queried. Next, we checked the Query Type (QTYPE) byte
field, and if it matched the desired record request, we stored the object. For example, to select
only DNS "A" records, we verified that QTYPE = 0x01.

While our initial goal was to focus on queries for IPv4 A records, we accepted queries for
AAAA, TXT, SRV, and MX records, to see if the addition of these records would assist Orange
in classifying users. Table 3.3 shows the particular QTYPEs and corresponding values [15, 21,
22] of the QTYPE field for the records we selected. As when using destination IPs, we used
C++ maps to track the number of times a source IP issued a DNS query for a particular object
(see Table 3.4).

map <uint32_t, map <string, uint32_t> > src_hostname_map;

3.4 DNS Modifications
In addition to selecting various types of record queries, we also recognized that some queries are
more descriptive of a user’s behavior than others, while other queries can be aggregated together
as they represent the same user intent or action. Thus, we explore whether various means
of cropping the hostname queries yields more accurate results. 93% of the hostnames were

15

modified in at least one of the techniques described in this section, and 7% of the hostnames
were in a format that was not affected by the cropping.

3.4.1 Retain Second-level Domains
One of the modifications we performed to the DNS QNAMEs was to crop the DNS host-
names to only retain the second-level domains. The goal was to see if the cropped hostnames
would more accurately reveal a user’s web activity. For example, since www.google.com

and google.com represent queries for the same website, we treat both as just google.com.
We also observed that a number of DNS queries had numerical prefixes. Some of the num-
bers appear to be IP addresses, other numbers seemed to be different server names, possi-
bly for load-balancing purposes. Retaining only the parent domain means that queries for,
say, lh4.googleusercontent.com and lh5.googleusercontent.com are treated as just
googleusercontent.com. By considering similar DNS queries to be the same, we give more
weight to the parent domain query, perhaps better reflecting the user’s demand to visit that site.
We test this hypothesis by comparing results of complete hostnames with cropped hostnames
in §4.4 and §4.5.

3.4.2 Exception for nps.edu Websites
An exception to the tested modification of retaining only the parent domain is when the host-
name ends with nps.edu. As all users on the tested network are students at the Naval Postgrad-
uate School (NPS), there is a very high probability that most users will regularly visit several
websites ending with the nps.edu domain. Thus, whereas retaining only the parent domain for
visits to other websites, including (and, perhaps, especially) those for university websites may
help identify particular users, for the NPS network, we retained two more subdomain parts of
the hostname.

3.4.3 Remove CDN Domains
If a website is a customer of a Content Distribution Network (CDN), DNS queries for that
website may be appended with the CDN’s parent domain. For example, an nslookup query
for www.jamestownsun.com, the website of the local newspaper in Jamestown, North Dakota,
shows that the CNAME for this website is www.jamestownsun.com.edgesuite.net. The
edgesuite.net domain belongs to Akamai Technologies, a popular CDN. As the purpose of
the DNS request is to obtain an IP address for the content of jamestownsun.com, regardless
of the involvement of a CDN, we decided to strip off the CDN domain to investigate the effect
on user identification accuracy. When combined with the hostname-cropping discussed earlier

16

in this section, a DNS query for www.jamestownsun.com.edgesuite.net is thus recorded as
jamestownsun.com. The particular CDN domains that repeatedly appeared in the data, and
were specifically cropped, were edgekey.net, edgesuite.net, and akadns.net.

3.4.4 Potential Downsides of Using Cropped Hostnames
The cropping techniques discussed above affected about 93% of the hostnames and come
with their own potential downsides. For example, queries for monterey.craigslist.org

and fargo.craigslist.org both reveal a user’s interest in craigslist. By retaining only the
second-level domain, we effectively increase the weight of craigslist.org, but we lose the
potential unique marker of which city or region the user really wants to view. Additionally, each
craigslist page has links associated with a particular region, such as nearby cities, and each link
entails a DNS query when the page is loaded. By considering only the second-level domain of
each DNS query, this method could potentially overweight craigslist.org, when the DNS
queries for each link on each page are logged. Thus, a user who navigates to a particular city
on the website will have logged dozens of hits (in our model) to craigslist.org for a sin-
gle visit. That same user could conceivably make multiple visits to cnn.com, but the craigslist
marker might inappropriately dominate the user’s profile.

Another potential pitfall is that the modifications might be overly specific to our current dataset.
Selected DNS queries over a week’s time are not enough to develop a sound model of the all
the data in the dataset, or of potential future data. Finally, if DNS queries are sent to different
servers for load-balancing purposes, it is not clear what the longevity of a single server would
be. If queries for the different servers change often, then reducing them to the same second-
level domain might reap benefits. On the other hand, if there are more DNS queries for one
particular server over the others, then by stripping the query of the server name could mean the
potential loss of a unique marker with no benefit to identification accuracy.

3.5 Tab Files
The Orange data-mining software program reads input from tab files [20]. The tab files are
simple text files that are formatted in the proper manner, and have “.tab” as their extension.
Table 3.5 shows an example tab file. For our analyses, we created tab files that were organized
in a table-style format, with a header row consisting of each unique destination IP visited by all
users during the training session. Following the method of Banse et al. for most of our training
and testing sets, this period was one 24-hour day. The final column of row one merely holds the

17

SiteA SiteB SiteC Src
continuous continuous continuous discrete

0 7 9 srcIP1
0 10 0 srcIP2

Table 3.5: Example format of an Orange tab file

title of the the value to be tested. In our case, it says “src,” indicating that we wish to identify
source IP addresses.

The second row of the header indicates whether each datum in the first row has few or many
possible values, indicated with the label “continuous” or “discrete.” For instance, the row one
header cell containing “src” is labeled as discrete, since there are a discrete number of source
IP addresses in each session. The remaining row one cells, all of which contain destination
IP addresses, are considered to be continuous, since the number of visits to an IP address is
virtually unrestrained.

After the header, the first (or, optionally, the last) column of the tab file is populated with the
object to be tested, which is the source IP addresses for us. Each cell under the destination
IPs in the header is filled in with the tf-idf weighting for the number of times the source IP in
column one visited the destination IP in the header.

3.6 Term Frequency-Inverse Document Frequency
tf-idf is a measure of how distinctive a term is in a document. In our case, it is a measure of
how distinctive a particular destination IP or DNS query is to a user’s network profile. There
are several variations on this metric [23]. As we were attempting to reproduce (and further
compare) the user identification technique set forth in Banse et al. [5], we employed the method
they chose, and we describe their method next. Term frequency tf is a measure of the frequency
f of occurrences of a term t in a given document d. The more frequently a destination IP
or DNS query (the term) is accessed during a user’s on-line session (the document), the more
important that IP is to a user’s profile. The frequency ft,d is a raw count of the number of
times t occurs in d, and thus may be biased toward longer documents that have more absolute
occurrences of t, due to length. To help mitigate this bias, we employ logarithmic scaling to
create tft,d = log(1+ ft,d) [24].

The inverse document frequency idf is a measure of the frequency of occurences of term t across
all documents D. A destination IP or DNS query hostname that is common in all user sessions

18

SiteA SiteB SiteC Src
continuous continuous continuous discrete

0 1.55 3.23 srcIP1
0 2.01 0 srcIP2

Table 3.6: Example format of an Orange tab file with tf-idf applied

(such as the school’s website or webmail site) is less valuable for individual user identification
than an IP that is common to a small number of users. The idf for a particular term is computed
by dividing the total number of documents N by the number of documents containing the term,
d ∈D : t ∈ d, and then taking the logarithm of the quotient: idf= log(N/(d ∈D : t ∈ d)). Taking
term frequency and inverse document frequency together [24], the tf-idf is:

tf-idf = log(1+ ft,d) ·
N

d ∈ D : t ∈ d

Use of the tf-idf weighting should increase the effect of a destination IP address or DNS query
hostname that occurs frequently in a user’s on-line session, while simultaneously reducing the
effect of a destination IP or DNS hostname that is commonly accessed or queried by many
different users. Table 3.6 shows a notional example of how the tab file looks after the tf-idf
weighting is applied.

We performed the tf-idf transformation prior to creating and writing to the tab files. The C++
maps referenced in §3.2 and §3.3 already contain the number of visits for each source IP to
each destination IP (or queries for each hostname). As we were parsing the pcap files for
each session, we used another map to keep track of the number of source IPs that visited each
destination IP. The total number of source IPs can be obtained just from the size of the map. We
used these frequency counts to perform the transformation as we were writing to the tab file.

3.7 Training and Testing Time Periods
This section describes the different time-periods we used for the training sets and tests sets.
Most of our analyses were performed by training on one day, and testing on the next day. Each
day was considered one session for each user. We also performed variations on the training sets,
such as increasing the number of recognized sessions per day, and using multiple days for the
training set.

19

3.7.1 Daily Instances
In their work, Banse et al. were taking the point of view of a malicious or “curious” DNS
resolver. For their training and testing datasets, they used a time period, or epochs, of one
day for the training set, and the immediately following day for the test set [5]. Following
their example, our primary epochs for training and testing sets are two adjacent days. In both
train and test datasets, we create an array, or instance, for each source IP, consisting of every
destination IP (or DNS query) that source visited (or issued) throughout the 24-hour epoch. In
these tab files with daily instances, each active source IP address only appears one time. While
the length of the epoch is 24 hours, the epoch itself need not begin at midnight. That said, we
elected to start our epochs at midnight in our local time zone.

3.7.2 Multiple Daily Instances
We also explored the effect of setting the epoch to 24 hours, but having the training set cover
multiple days to determine whether more training samples would yield higher accuracies. The
effect is similar to merging adjacent tab files, provided we updated the tab file header to reflect
all destination IPs that were seen throughout the entire training period.

We created tab files with multiple daily instances for training sets only, and kept the test sets
at one 24-hour day. The number of days covered by the training set ranged from two to six
successive days. That is, if the first day was the i-th day, di, then all the days in the training set
are di,di+1,di+2, ...,di+ j, where j is the total number of days being considered in the training
set. The test set would then consist of day di+ j+1, the day immediately following the last day
in the training set.

3.7.3 Advantages and Disadvantages of the Different Methods
There are several advantages to using the daily instances described in §3.7.1. Perhaps the largest
advantage is that a daily instance incorporates all network activity for a user over a full day, and
uses that model to identify users on the following day. Since the training set is a full day, we
obtain a model of a user’s daily activity, regardless of time of day.

The model using multiple daily instances has the potential to produce a profile of normal daily
use. Banse et al. found that their profiles performed well, even after a 90-day gap between
training day and testing day [5]. However, their dataset was obtained from a residential housing
network at a university. In contrast, our dataset is from the Computer Science building at a

20

commuter school. The amount of private browsing is almost certainly less than in a residential
network, as discussed in §2.5.

3.8 Classifiers
Identifying users based on network behavior can be treated as a multi-class classification prob-
lem. We calculated accuracy using three different classifiers: Naïve Bayes (NB), Decision Tree,
and K-Nearest Neighbors (KNN). These classifiers were selected due to their use by the papers
from which this thesis drew some inspiration. Banse et al. [5] used Naïve Bayes for their user
identification accuracies using DNS queries. Yang [6] employed the learning tree classifier (in
addition to profiles using support and lift) in her method using destination IP addresses. K-
nearest neighbor was included due to its use by Udoeyop [19]. Despite employing significantly
different methods than this thesis, as discussed in §2.6, Udoeyop’s use of KNN made it an
attractive third test.

3.8.1 Naïve Bayes
When using Naïve Bayes to identify users, we consider all the source IPs and destination IPs
(or DNS queries) in a specified time epoch. The source IPs are treated as the classes, and the
destiation IPs are the features in a feature vector. The Naïve Bayes formula yields the class
with the highest probability, based on the probability of the observed features and the relative
probability of each class [25]:

argmax
C

[
P(C | ~F)

]
= argmax

C

[
P(C)

n

∏
i=1

P(Fi |C)

]

where the class C is a source IP address, and feature vector ~F is a vector holding destination IPs
or DNS query hostnames. For our purposes, the Naïve Bayes classifier should yield the most
likely user source IP, given the probabilities of the observed destination IPs or hostname for
each user.

3.8.2 Classification Tree
A decision tree classifies instances based on the features in a feature vector, sorting the classes
based on the features [26]. As in Naïve Bayes, the features are the destination IPs or DNS
queries, and the class is the source IP of the user. At its basic level, the classification tree will
look at all the destination IPs in the training set that were visited by each source IP. It will use

21

that information to come up with a series of “if then” statements that it will use on the testing
dataset. Orange uses the C4.5 tree induction algorithm in its classification trees [27].

3.8.3 K-Nearest Neighbors
With the K-nearest neighbor (KNN) method, the algorithm finds k neighbors that are nearest to
the instance in question. If k > 1, then a plurality vote is taken of these k nearest neighbors [25].
While KNN is a relatively simple classifier, all of our features are of the same type. That is, we
are only using destination IPs or DNS queried hostnames for our features. The hope is that this
will avoid some of the issues with using KNN to find nearest neighbors, when some features
are have significantly different implications. For example, if we were included features such as
the user’s age and salary, in addition to the destination IPs, the KNN model could potentially
consider two sources to be similar, based mainly on age and salary, but not destination IPs [28].

3.9 Orange
For our accuracy calculations, we used Orange [20], an open-source data-mining software pro-
gram. Although Orange has the option of using a graphical user interface (GUI) for visual
programming, we utilized Python scripting to run our tests, as it gave us a greater degree of
control, and allowed for us to create reports in a tailored format for subsequent processing.

3.9.1 Settings for NB, Tree, and KNN
The particular settings we used in Orange for Naïve Bayes, Classification Tree, and K-Nearest
Neighbors are as follows:

bayes = Orange.classification.bayes.NaiveLearner(train_data, m=2)

tree450 = orngTree.TreeLearner(train_data, max_depth=450,

same_majority_pruning=1, m_pruning=2)

knn5 = Orange.classification.knn.kNNLearner(train_data, k=5)

The settings used for our classifiers were obtained by running trials using different settings, and
choosing the ones that yield the highest accuracies. We varied the m-estimate in Naïve Bayes,
m for pruning in Learning Tree, and how many k nearest neighbors to select from in KNN,
before settling on the above values. Of note, the settings for Learning Tree did not seem to
affect the accuracy when training on one day and testing on the next, but did yield significant
accuracy increases when the training set included multiple daily instances. Also, variations in
the m-estimate for Naïve Bayes appeared to have no significant effect on any of our tests.

22

3.10 Lifetime
For each source and destination IP pair, we were interested in knowing whether a particular
source ever visited that same destination IP again. If so, we wanted to determine the length of
time between the first and last time that source visited that destination IP. We also considered
visits to each destination IP, regardless of the particular source. In other word, we wanted to
know whether there are certain destination IPs that a user only visits often, or only a few times,
and whether there are certain destination IPs that are never visited more than once by any user.

3.10.1 Definition of Lifetime Using Sliding Windows
For a particular source/destination IP pair, we define the lifetime to be the amount of time that
passed between the first and last time that destination IP is seen in a TCP SYN packet sent by
that source IP. The time period is a one-week sliding window. For example, if the assessment
period begins on Wednesday, May 8, we look at all destination IPs seen between May 8-14
(Wednesday through Tuesday), noting also the source IP in the packet. We next look at all
source/destination IPs seen between May 9-15 (Thursday through Wednesday). We continue
until the starting date has ranged an entire week (see Figure 3.1).

We do a similar calculation for each destination IP, regardless of source, using the same sliding
window technique. We also calculate lifetimes for source IPs and the hostnames seen in DNS
queries issued by those sources (source/hostname pairs), as well as for DNS query hostnames,
regardless of source. Full lists were created of lifetimes for src/dst IP pairs, src/hostname pairs,
dst IP regardless of source, and hostname regardless of source.

3.10.2 Recording Lifetimes Using Sliding Windows
Once a destination IP is first seen in a window, it is recorded only for that window, and is not
considered in any other window. This is done to ensure we calculate only one lifetime per IP.
For instance, as shown in Table 3.7, if destination IP A is seen on Wednesday, Thursday, Friday,
Saturday, and Sunday (all at the same time of day), the lifetime for A would be four days. If
destination IP B is seen on Thursday, Friday, and Saturday (at the same time of day), it has a
lifetime of three days. Although A was seen on Thursday, which was the starting day for a new
sliding window (the one that B is in), A is ignored for B’s window. If this was not the case, we
would register multiple lifetimes for A, each in different windows.

23

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.1: Graphic showing the sliding windows. Each node represents one
day, with shaded nodes indicating days included in a particular seven-day
window. Each window covers seven days, with start days on each day of a
week (the first through the seventh of this month).

dstIP Wed Thu Fri Sat Sun Mon Tue Lifetime
A x x x x x 4 days
B x x x 3 days
C x x 6 days

Table 3.7: Destination IPs A and C are recorded in the Wednesday-
Tuesday sliding window; dstIP B is recorded in the Thursday-
Wednesday sliding window. Dst IP A is not considered in the
Thursday-Wednesday window.

3.10.3 Method of Calculation for Lifetimes Using Sliding Windows

To calculate the lifetime, we used a C++ map. The key was the pair <srcIP, dstIP> and the
value was the pair <time first seen, time last seen>. The first time a src/dst IP pair is seen, time

first seen and time last seen are set to the same time. For subsequent occurrences of a src/dst
pair, only the time last seen field is updated. We use a separate map for each window, for a
total of seven maps (one for each day of the week). After creating maps starting on each day
of the week, we calculate the lifetime by taking the difference time last seen - time first seen.
If a source only sent one SYN to a certain destination IP, then the lifetime for that destination
would be zero, since time last seen and time first seen would be equal.

24

3.10.4 Standard Definition of Lifetime
In addition to tracking lifetimes using a one-week sliding window, we also calculated lifetimes
purely within the context of a fixed one-week period. In this method, all destination IPs were
included in the same tracking map, regardless of the day on which they were first seen. For
example, for the week May 8-14, destination IPs seen on May 10 were tracked in the same map
as those seen on May 8, and the last possible date to search for any IP was May 14.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:
Results

The goal of this thesis was to explore the differences between using destination IPs and DNS
hostnames when attempting to identify network users. In doing so, we investigated the effect on
accuracy when filtering the data sets to omit infrequently seen destination IPs and DNS queries,
and when filtering to retain only destination IPs and DNS queries that were seen regularly during
the observed period.

In the results below, we see that the best improvements in accuracy were when the filters either
included or removed source/destination IP pairs or source/DNS query hostname pairs, versus
just looking at either the destination IP or hostname. Additionally, the accuracy improved when
the datasets were filtered for more frequently observed src/dst IP pairs or src/hostname pairs,
but the tradeoff was that fewer source IPs were present in those datasets.

4.1 CDFs for Access Lifetimes
We generated Cumulative Distribution Functions (CDFs) for the lifetimes for src/dst IP pairs,
src/hostname pairs, dst IPs irrespective of source, and hostnames irrespective of source (dis-
cussed in §3.10). For convenience, we will refer to src/dst IP pairs as src/dst, src/hostname
pairs as src/host, and dst IPs (or hostnames) irrespective of source, as dst-only (or hostname-

only).

4.1.1 CDFs for Lifetimes of Flow Accesses
Figure 4.1 plots the CDFs for src/dst IP pairs and dst-only accesses, for both the standard and
sliding-window lifetimes. As discussed in §3.10, we defined the standard lifetime to be the time
difference between the last seen time and first seen time for a destination IP over the course of
one week. As the value of last seen time is updated each time the dst IP is observed during
the week, we are effectively using max(last seen time - first seen time), 1 week). The sliding-
window lifetime is also equal to max(last seen time - first seen time), 1 week, but is calculated
by looking seven days out from each day in the one-week assessment period.

When the source IP is considered for the sliding-window lifetimes, about 50% of the <src/dst>
pairs had very short lifetimes, less than 371 seconds (about six minutes), and about 10% had
lifetimes longer than six days. For the standard lifetimes, the bottom 55% had lifetimes less

27

Figure 4.1: Flow - CDF of standard and sliding-window lifetimes for
src/dst and dst-only accesses (5-14 May)

Figure 4.2: DNS - CDF of standard and sliding-window lifetimes for
src/hostname and hostname-only DNS queries (5-14 May)

28

Figure 4.3: DNS - CDFs of sliding-window lifetimes for complete and
modified DNS queries (5-14 May)

than 257 seconds (see Table 4.1), and about 5% were longer than six days. The graphs also
displayed a stair-step appearance. For Saturday and Sunday (the third and fourth days), the
steps are still present, albeit less pronounced for the standard lifetimes.

It makes sense that the sliding-window lifetimes for src/dst pairs display a more consistent
stairstep shape than when using standard lifetimes. Suppose a src/dst pair A was first active
on the sixth day of the week being analyzed (our base week), and that A was active on each
subsequent day. Using standard lifetimes, since observations are stopped on the last day of the
one-week period, A can only achieve a max lifetime of one day, even though it was active for
a week after first appearing in the base week. Under sliding-window lifetimes, since we look
one week out from each day in the base week, A is able to obtain a max lifetime of seven days.
It also makes sense that the CDF for src/dst pairs has noticeably higher y-values than the CDF
for dst-only. The src/dst pairs are more specific, so we had expected shorter lifetimes, which is
reflected in the higher y-values for the src/dst CDF.

29

Data Mode Bottom Pct Sec Min

flow
src/dst 50% 371 6.2

dst-only 40% 653 10.9

dns
src/host 60% 1,446 24.1

host-only 57% 97 1.6

dns (mod)
src/host 50% 88 1.4

host-only 60% 62 1.0

Table 4.1: Sliding-window lifetimes for src/dst, src/hostname, dst-only,
and hostname-only, showing the time corresponding to the point at
which the CDF appears to break away from the y-axis.

For destination IP lifetimes created irrespective of the source IP, the CDFs have a similar ap-
pearance. The sliding-window lifetime CDF shows that roughly 40% of all destinations had
very short lifetimes, less than 653 seconds, with about 30% more than seven days. For the stan-
dard lifetime, the numbers were about 50% below 577 seconds, and 20% over seven days. The
dst-only graphs have a similar stair-step look, but with more dramatic jumps at the end. As with
the src/dst pairs, the sliding-window lifetimes for dst-only are more regular than the standard
lifetimes, though the steps are less pronounced than for src/dst pairs.

4.1.2 CDFs for Lifetimes of DNS Queries
Figure 4.2 shows the standard and sliding-window lifetimes of DNS queries using src/hostname
pairs and hostname-only. The shapes are similar to those using destination IPs, except that the
differences among the DNS query graphs are slight, regardless of the type of lifetime or whether
source IPs are included in the assessment.

Notice also that, unlike CDFs for destination IP the host-only CDF starts out higher than the
src/host CDF, then crosses below. A possible explanation is DNS Prefetching and TCP Pre-
connecting (see discussion in §4.1.3). A website could contain many Uniform Resource Loca-
tor (URL) links, all of which could cause the browser to issue DNS queries. If those URLs
are mostly subdomains for the website currently being viewed, many IPs for those subdo-
mains could be the same. If so, a single visit to a webpage could cause significantly more
DNS queries than TCP SYNs. For example, we did a test using Google Chrome to access
monterey.craigslist.com, and observed 19 different DNS queries, but only one SYN. In
the graphs using destination IPs, the CDFs had greater separation from one another. Figure 4.3
shows a comparison between DNS queries for A records, and DNS queries when the hostname
has been modified, as discussed in §3.4. It can be seen that the modified DNS hostnames have

30

longer lifetimes for the src/host pairs, as indicated by the CDF having smaller y-values. A likely
explanation is that cropping the hostnames combined some different queries into a single query.
The last seen time and first seen time for any of those queries was then given to the cropped
hostname, i.e., the cropped hostname had more opportunities to record a longer lifetime. one
As with the CDFs for flow data, we notice that about 50-60% of the hostnames were only
queried in short user sessions, with lifetimes of only about 65-82 seconds when the source IP is
included, and about 35-49 seconds for the hostname-only CDFs.

4.1.3 Implications of the Sliding-window Lifetime CDFs
There are several implications that can be drawn from the shape of the graphs. First, and perhaps
most noticeably, is that half of the destination IPs that were accessed by a particular source IP
were only accessed during short network sessions. This implies that when the average user
visited a website or accessed a destination IP, about half the time that same user never accessed
the dst IP again during the next seven days. As discussed below, TCP Preconnecting, embedded
URLs and advertisements may all trigger multiple TCP SYNs. Furthermore, when any user
accessed a destination IP, there was roughly a 40% chance that that destination IP would not be
accessed again by any user. Much of this could be due to CDNs and websites that have multiple
load-sharing IP addresses, reducing the likelyhood that the same (or any) user would access
those same dst IPs. When using DNS queries for the analysis, it is also seen that half of the
queries are never repeated by the same source IP again in the next seven days, and 60% of all
queries are never repeated by any source IP.

A possible explanation for the large number of non-repeated accesses is DNS Prefetching and
TCP Preconnecting [29]. Many webpages have links to other webpages. In an effort to speed
up users’ browsing experience, some web browsers will issue DNS requests for the linked
pages, and potentially establish a TCP connection, even if the user does not actually click on
the links. Thus, if a user navigates to some webpage and never returns, potentially dozens of
TCP SYNs and DNS queries are sent, all due to the user visiting that single page. If the user
never returns to that website, then those same SYNs and DNS queries may never be repeated.
Additionally, a webpage may contain embedded URLs or advertisements that automatically
send DNS requests and TCP SYNs to deliver the content. Again, if a user does not return to
the webpage, those DNS requests and TCP SYNs might not be repeated. Furthermore, the
webpages or advertisements in the webpage themselves may use CDNs, which could lead to a
greater variety of destination IPs for the TCP SYNs.

31

Second, the presence of the stair-step shape indicates that most of the repeat dst IP or hostname
accesses occurred 18-30 hours after the first access, which make sense. The dataset is from an
academic building, and relatively few students or staff are in the building late at night. Thus, the
18-30 hour repeat is a valid expectation for initial accesses that occur during the workday. This
same stair step was also present with the DNS queries, which again makes sense. Each step
involves roughly 5% of the accesses or DNS queries. Third, about 10% of the accesses involve
the same source IP visiting the same destination IP at least twice in a period of at least six days,
and about 30% of all destination IPs (irrrespective of source IP) in the dataset were accessed at
least twice during a six-day period.

4.2 Ignoring or Retaining Specific Accesses
Using the list of lifetimes for flow and DNS access data (§3.10), we can elect to filter out
the short-lived src/dst pairs, src/hostname pairs, and short-lived destination IPs and hostnames
(irrespective of source IP). As these short-lived IPs or queries were not repeated after the initial
access, their presence likely detracts from the robustness of our generated models. For example,
if a source visits a specific destination only one time, then that src/dst pair will be present
either in a training instance or a testing instance, but not both. Thus, omitting these short-lived
accesses could help with identification accuracy.

We can also filter the datasets to only retain longer-lived activity. Because these accesses were
more frequently accessed, they indicate more durable user network behavior. Creating training
and testing datasets composed only of the long-lived accesses should facilitate source identifi-
cation accuracy. That said, because our lifetime definition is last seen time - first seen time, it
is possible for a destination IP or DNS query to have been only issued twice: once on the first
day, and once on the last day. These IPs or queries would then be included alongside accesses
that occurred every day. Despite this concern, filtering for long-lived accesses should at least
remove the destinations or queries that are clearly less durable, which should have a positive
effect. In §4.4.4, we examine the accuracy results when considering the number of different
days in a week each dst IP or DNS query was observed.

Since our analysis uses packet captures, and is not occurring in real time, we are able to create
the lists of short/long-lived accesses after the the fact, and then optionally apply the filters to
retain or omit sources or destinations (or hostnames) from one or both of the training and test
sets. For brevity, we will use the abbreviation SL for short-lived and LL for long-lived, when
the meaning is clear from the context.

32

Note that we are considering the short-lived accesses to be those 50-60% of accesses with
extremely short lifetimes (Table 4.1 that caused the CDFs in Figures 4.1, 4.2, and 4.3 to appear
to initially cling to the y-axis. Long-lived accesses are those that have lifetimes of at least five
or six days. There are, of course, accesses with lifetimes that we did not classify as either
short-lived or long-lived. When the SL accesses are omitted, the dataset then contains the LL
accesses as well as the “in-between” accesses. When just the LL accesses are retained, both the
SL and in-between acceesses are omitted from the dataset. The variations we explored for the
flow data were as follows:

• filter just the training sets to omit short-lived src/dst pairs
• filter both training and testing sets to omit short-lived src/dst pairs
• filter just the training sets to omit short-lived dst IPs only
• filter both training and testing sets to omit short-lived dst IPs
• filter just the training sets to retain long-lived src/dst pairs
• filter both training and testing sets to retain long-lived src/dst pairs
• filter just the training sets to retain long-lived dst IPs only
• filter both training and testing sets to retain long-lived dst IPs only

For the DNS query data, we performed the same variations as with the flow data, but using
src/hostname pairs and hostnames only, vice destination IPs.

4.3 Unassisted Accuracy
The first experiment we performed was written in C++, and was "unassisted," in that it did not
utilize any data-mining software packages. It was performed only on destination IP addresses,
and did not use access lifetimes to omit or retain destination IPs. We performed two analyses
on our datasets. The first analysis did not involve any filtering of the training or test sets. For
the second analysis, the test sets were filtered to only retain source and destination IPs present
in the training set.

Each training set was composed of TCP/IP source/destination pairs covering a full day of TCP
SYN packets. The test sets were built from src/dst pairs from the immediately following day,
and were constructed in the same manner as the training set, except that for the filtered analaysis,
the source and destination IPs are only added to the test set if they also exist in the training
set. Note that this method was only employed for this particular test, as it creates an unfair
advantage to accuracy, as new source IPs would never be classied. The goal was to establish a

33

Thurs Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1

Figure 4.4: Day-to-day accuracy using tf-idf and cosine similarity
on src/dst IPs with unfiltered datasets (May 8-14).

baseline with a high, albeit unfairly obtained, identification accuracy using destination IPs, and
determine how the data-mining software package Orange would fare against this method. The
program creates an array of destination IPs visited by a particular source IP. In classifying the
test set, we make a prediction for each source, by applying tf-idf and cosine similarity to the
accompanying array of destination IPs. The tf-idf was calculated as described in §3.6.

Results are shown in Figure 4.5 for May 8-14, 2013. When both the training and test sets were
from a weekday, the accuracies were fairly consistent, averaging 30.5% for the unfiltered anal-
ysis and 34.6% for the filtered version. Accuracy decreased when the training set was on Fri-
day and the testing set was on Saturday, rebounded when training/testing on Saturday/Sunday,
then decreased for training/testing on Sunday/Monday, before stabilizing for training/testing on
Monday/Tuesday. The mean average for the full six-day period was 29.5% for the unfiltered
analysis and 33.5% for the filtered version. While these accuracy results are not bad, we were
surprised that the filtered analysis was only 4% higher than the unfiltered tests. Our intuition
was that by removing sources and destinations in the test sets that were not present in the train-
ing sets, we lowered the chances of wrongly classifying a source.

The noticeable decreases in accuracy for training/testing on Friday/Saturday and Sunday/Mon-
day can reasonably be explained by the dataset. The packet captures that were analyzed were
from an academic building which sees few students during the weekend. Thus, the training set

34

Thurs Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1

Figure 4.5: Day-to-day accuracy using tf-idf and cosine similarity
on src/dst IPs, with test sets filtered to omit source and destination
IPs not present in the training sets (May 8-14).

on Friday contains more source IPs than the test set on Saturday, increasing the chance of mis-
identified sources. Conversely, the training set on Sunday contains far fewer source IPs than the
test set on Monday, so many of the IPs in Monday’s set cannot be identified, as our data-mining
program never had the chance to learn them.

4.4 Orange: Daily Instances
The rest of the accuracy results were obtained using the Orange [20] data-mining software
package. Similar to the unassisted accuracy in §4.3, the training and test sets looked at one
day each, aggregating the the number of times each source visited a destination during that
day. As discussed in §3.9, accuracies were computed with Orange using Naïve Bayes (NB),
Classification Tree, and K-Nearest Neigbors (KNN). We conducted analyses on complete or
unfiltered sets; on sets that were filtered to remove short-lived flows and DNS queries; and on
sets that were filtered to retain only long-lived flows and DNS queries. We applied the filters to
the sets in various ways, as described in §4.2. Unlike in §4.3, when building the test sets, we
did not consider whether source or destination IPs were in the training sets. That is, we did not
omit any IPs from the test set (for any of the following analyses), based on whether those IPs
were present in the training set.

35

mean accuracy: unfiltered sets

Analysis Data
Avg # of

NB Tree KNN
srcs dsts

unfiltered
flow 443 9,046 27.1 8.5 13.5
dns 480 27,941 46.5 20.3 30.9

dns (mod) 480 12,389 43.4 20.7 40.0

Table 4.2: Mean accuracy (percent) and mean number of sources and desti-
nations for unfiltered training and testing sets during the week of May 8-14.

4.4.1 Unfiltered Daily Training and Test Sets
For the unfiltered analysis, we used a full day of packet captures for the training set, and tested
on the following 24 hours. The training and tests set were not filtered for short-lived destination
IP or hostnames, nor was the test set filtered for sources or destinations that were absent from
the training set. Both training and test sets contain arrays for every source and destination of
every TCP SYN packet captured during their respective 24 hours. We performed the procedure
of “train on one day, test on the next day” for the week of May 8-14, 2013.

Destination IPs. For profiles built using destination IPs, Orange’s Naïve Bayes module usually
returned a higher identification accuracy than the Tree or KNN classifiers (Figure 4.6). The
increase in accuracy on Sunday (32.4% for NB) may be due to the fact that most students do
not utilize the academic buildings over the weekend. Thus, the activity on Saturday and Sunday
would likely be due to a smaller group of the individuals present on both days. Conversely, the
considerable decrease in NB accuracy on Monday (13.3%) is likely due to training on fewer
source IPs on Sunday, followed testing on a much larger number of sources on Monday, when
students return to school. Mean accuracies and numbers of sources and destinations for the
week are shown in Table 4.2.

Hostnames. Profiles composed of hostnames from DNS queries yielded higher identification
accuracies than profiles using destination IPs, with a maximum NB accuracy of 56.6% and an
average accuracy of 46.5% (see Figure 4.7 and Table 4.2). As when using destination IPs, NB
generally yielded higher results than Tree or KNN. The NB accuracy graphs in Figure 4.7
display a similar trend as when dst IPs were used, increasing on Sunday with a significant drop
on Monday, and then recovering on Tuesday.

When the DNS hostnames were modified (§3.4) prior to analysis, the daily NB accuracies were
slightly lower, with an average for the week of 43.4%. However, the KNN averages were

36

significantly higher when using modified hostnames, increasing by 10% to a weekly average
of 40.0%, and registering the highest single-day accuracy of any classifier for the unfiltered tab
files, at 63.2% when testing on Sunday.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Daily Unfiltered Flow Accuracy

NB
Tree
KNN

Figure 4.6: Day-to-day Accuracy using un-
filtered dst IPs (May 8-14).

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Daily Unfiltered DNS Accuracy

NB
Tree
KNN

Figure 4.7: Day-to-day Accuracy using un-
filtered DNS queries (May 8-14).

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Daily Unfiltered DNS (mod) Accuracy

NB
Tree
KNN

Figure 4.8: Day-to-day Accuracy using un-
filtered modified DNS queries (May 8-14).

4.4.2 Filtering Out Short-lived Activity
For this analysis, we used the filters for short-lived accesses (discussed in §4.2) to omit all
short-lived network flows and DNS queries during the observed period. As discussed in §4.1.1,

37

mean accuracy: short-lived filter

Analysis Data
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

SL flow
src/dst 433 5,584

train 29.6 10.3 17.8
train+test 33.8 11.0 18.6

dst-only 443 7,511
train 27.0 8.7 13.8

train+test 26.9 8.9 13.8

SL dns
src/host 475 13,363

train 47.0 22.7 39.2
train+test 52.0 23.7 39.2

host-only 480 27941
train 46.2 22.4 32.8

train+test 46.6 22.3 32.9

SL dns (mods)
src/host 476 5,483

train 45.4 21.1 44.8
train+test 47.6 21.5 44.8

host-only 479 8,059
train 43.4 19.2 41.1

train+test 43.6 19.1 41.3

Table 4.3: Mean daily accuracy after filtering out SL accesses (May 8-14). *Average numbers
of source and destination IPs are for filtered sets.

the threshold to be considered short-lived was based upon visual inspection of the CDFs, and
included the src/dst pairs that contributed to the part of the CDF that appeared to cling to the
y-axis. The values for each type of analysis (src/dst, dst-only, src/host, host-only) range from
one to six minutes (see Table 4.1).

There were separate filters for SL src/dst pairs, src/hostname pairs, dst IPs only, and hostnames
only. We first computed the identification accuracy when just the training sets were filtered,
but the test sets remained unfiltered. We then repeated the analysis when both the training and
testing sets had short-lived activity filtered out.

Destination IPs. When using the short-lived filters for flow data, we saw the largest increase in
accuracy when the filter for SL src/dst pairs was applied to both the testing and training sets.
When doing so, the NB accuracies increased to 33.8%, an increase of 6.7% (Figure 4.10). Tree
accuracy improved by 2.5%, and KNN improved by 5.1%. When the filter was applied to just
the training set (Figure 4.9), the accuracies improved a bit over the unfiltered accuracies, but
the increase was not as large. Mean results for the week are shown in Table 4.3. When filtering
based on SL src/dst pairs, the mean number of sources and destinations decreased from 443 to
433. This implies that 10 sources never accessed the same website past one short user session.
Surprisingly, when the filter was set to only filter out destination IPs irrespective of the source IP

38

address, it did not seem to matter much whether the test set was filtered, or just the training set
was filtered. In some cases, the mean accuracy actually decreased, albeit marginally (Figures
4.11 and 4.12).

Hostnames. When filtering for short-lived src/hostname pairs, accuracy improved the most
when filtering both train/test for src/hostnames (as with the flow data), with NB increasing
5.5% to 50.0% and KNN improving by 8.3% (Figure 4.14). As when using flow data, the other
applications of the SL filter to DNS data yielded only minor (and sometimes worse) accuracies.
When hostnames irrespective of source were filtered, it again did not matter much whether the
test set was filtered (Figures 4.13, 4.15, 4.13).

The effect for the modified DNS hostnames was similar to unmodified ones, except that the in-
creases in accuracy were more modest, with a 4.2% increase in NB accuracy and 4.8% increase
for KNN. NB was again the most accurate classifier, though only a 2.8% higher than KNN (See
Tables 4.17, 4.18, 4.19, 4.20).

Implications. For both DNS queries and flow accesses, filtering out the extremely short-lived
accesses and DNS queries that occurred only during one session, but which account for 50-60%
of SYNs and DNS queries, led to improved identification accuracy of roughly 5% for NB and
KNN. Thus, it would seem that over half of all user network activity (in our dataset) was, in
fact, noise that degraded identification accuracy.

It is practical to filter the training set, as we could obtain it prior to testing on the test set.
Filtering the test set, however, may not be practical, as we may not know whether it can be
filtered. For our tests, we were curios to see the effect of filtering both the training and test sets,
and we supposed that we had access to the test set in advance, i.e., we were not conducting our
analysis in real time.

Additionally, it makes sense that the accuracies would be higher with src/dst filter on both the
training and test sets, vice just filtering the training sets. When just the training set is filtered,
there are potentially many IPs or hostnames that present in the test set, but do not contribute
meaningful data. Due to the short-lived nature of these accesses, we don’t expect them to appear
in both the training and test sets.

39

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow SL Filter src/dst Train Set

NB
Tree
KNN

Figure 4.9: Day-to-day Accuracy (May 8-
14) filtering training set for src/dst pair
sliding-window lifetimes < 371 sec, the
bottom 50% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow SL filter src/dst Train/test Sets

NB
Tree
KNN

Figure 4.10: Day-to-day Accuracy (May 8-
14) filtering train/test sets for src/dst pair
sliding-window lifetimes < 371 sec, the
bottom 50% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow SL Filter dst-only Train set

NB
Tree
KNN

Figure 4.11: Day-to-day Accuracy (May
8-14) filtering training set for dst-only
sliding-window lifetimes < 653 sec, the
bottom 40% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow SL Filter dst-only Train/test Sets

NB
Tree
KNN

Figure 4.12: Day-to-day Accuracy (May
8-14) filtering train/test sets for dst-only
sliding-window lifetimes < 653 sec, the
bottom 40% of accesses.

40

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS SL Filter src/host Train Set

NB
Tree
KNN

Figure 4.13: Day-to-day Accuracy (May 8-
14) filtering training set for src/hostname
pair sliding-window lifetimes < 1446 sec,
the bottom 60% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS SL Filter src/host Train/test Sets

NB
Tree
KNN

Figure 4.14: Day-to-day Accuracy (May 8-
14) filtering train/test sets for src/host pair
sliding-window lifetimes < 1446 sec, the
bottom 60% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS SL Filter host-only Train Set

NB
Tree
KNN

Figure 4.15: Day-to-day Accuracy (May
8-14) filtering training set for host-only
sliding-window lifetimes < 97 sec, the bot-
tom 57% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS SL Filter host-only Train/test Sets

NB
Tree
KNN

Figure 4.16: Day-to-day Accuracy (May
8-14) filtering train/test sets for host-only
sliding-window lifetimes < 97 sec, the bot-
tom 57% of accesses.

41

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) SL Filter src/host Train Set

NB
Tree
KNN

Figure 4.17: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/hostname pair sliding-window lifetimes
< 88 sec, the bottom 50% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) SL Filter src/host Train/test Sets

NB
Tree
KNN

Figure 4.18: Day-to-day Accuracy (May 8-
14) filtering modified train/test sets for sr-
c/host pair sliding-window lifetimes < 88
sec, the bottom 50% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) SL Filter host-only Train Set

NB
Tree
KNN

Figure 4.19: Day-to-day Accuracy (May 8-
14) filtering modified training set for host-
only sliding-window lifetimes < 62 sec, the
bottom 60% of accesses.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) SL Filter host-only Train/test Sets

NB
Tree
KNN

Figure 4.20: Day-to-day Accuracy (May
8-14) filtering modified train/test sets for
host-only sliding-window lifetimes < 62
sec, the bottom 60% of accesses.

4.4.3 Filter to Retain only Long-lived Activity
The long-lived analysis was performed in a similar manner as the short-lived analysis in §4.4.2,
except that the filters were constructed to retain (vice omit) src/dst or src/hostname pairs, or

42

mean daily accuracy with 6-day filter

Analysis Data
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

LL-6d flow
src/dst 366 2,213

train 15.2 7.0 18.2
train+test 34.8 17.5 34.5

dst-only 441 4,687
train 26.8 9.5 15.3

train+test 26.7 9.6 15.4

LL-6d dns
src/host 434 4,766

train 31.0 17.2 42.6
train+test 59.4 33.6 59.5

host-only 478 11,369
train 45.8 20.3 34.8

train+test 46.4 20.9 35.2

LL-6d dns (mod)
src/host 437 1,797

train 30.5 14.4 43.4
train+test 54.6 28.8 63.1

host-only 479 4,308
train 43.5 19.3 42.4

train+test 44.0 19.3 42.6

Table 4.4: Mean daily accuracy (percent) after filtering to keep LL accesses with
sliding-window lifetimes longer than 6 days (May 8-14). *Average numbers of
sources and destinations are for the filtered sets.

individual dsts or hostnames, that are in the filter list. We calculated the accuracies when first
using six days as the minimum lifetime to consider accesses as long-lived. We then conducted
tests using a five-day threshold to consider accesses to be long-lived, and compared the results.
All mean accuracy results are shown in Tables 4.4 and 4.5.

Flow Data (Lifetime > 6 Days). Interestingly, the identification accuracy for long-lived flows
with a lifetime greater than six days had a mixed record across NB, Tree, and KNN (see Ta-
ble 4.4. The NB accuracies increased only when filtering both training and test sets to retain
LL src/dst pairs, and that increase was only slightly better than when filtering out SL accesses
(34.8% for LL, and 33.8% for SL). When filtering just the training set to retain LL src/dst pairs,
the accuracy decreased from the SL analysis, from 29.6% to 15.2%. It is possible that our LL
filter is removing accesses that are relevant on at least a day-to-day scale. Additionally, it could
be that our lifetime calculation of last seen time - first seen time may be “rewarding” infrequent
accesses that happened to be accessed six days apart, but were not accessed on adjacent days.
As with the SL analysis, the LL results for Tree and KNN showed significant improvement
when filtering both train/test data sets using src/dst pairs (Figure 4.22). The KNN accuracy was
almost the same score as NB (34.5% versus 34.8%). This was a 21% increase for KNN over the
unfiltered accuracies. Additionally, the KNN accuracies when filtering train/test sets to retain

43

only LL src/dst pairs were 15.9% higher than when filtering to omit just SL src/dst pairs (34.5%
compared to 18.6%). When filtering just the training set, KNN increased by less than half a
percent over the SL analysis.

The price of increased accuracy was 77 fewer sources when the six-day LL filter was used.
Again there was no significant effect when filtering to keep just destination IPs, regardless of
whether the test set was filtered.

DNS Data (Lifetime > 6 Days). Similar to results using flow data, a six-day filter on the DNS
data sets saw the highest identification accuracy with NB and KNN virtually tied, at 59.4% and
59.5%, respectively, when filtering both train/test sets (Figure 4.30). The increase for NB over
the SL analysis was 7.4%, and the increase for KNN was 20.2%. When just the training set was
filtered for src/dst pairs, the NB accuracy was 31.0%, a 16% decrease from the SL analysis, and
KNN registered a 3.4% increase. For hostname-only filtering, it again did not seem to matter
much whether the the test set was filtered along with the training set.

With the modified DNS data, when filtering both train/test sets, the NB score was about 5%
lower than the unmodified DNS hostnames. But the KNN graph was noticeably higher than the
unmodified hostnames, yielding the highest mean accuracy of all the classifiers at 63.1%, and
also had the highest one-day accuracy of 76.3% for the test on Sunday. The accuracies for NB
and Tree were each about 7% higher than the SL analysis, at 54.6% for NB and 28.8% for Tree.

When just the training set was filtered for src/dst pairs, the modified DNS data plunged by
14.9% for NB (to 30.5%) as compared the SL analysis, and Tree decreased by 6.7% to 14.4.%.
KNN was roughly the same as when filtering SL src/host pairs.

Flow Data (Lifetime > 5 Days). We next calculated the identification accuracies using a thresh-
old of five days, rather than six days, for accesses to be considered long-lived. The thinking
behind this was that perhaps six days was a bit stringent, as there may be some accesses that a
user routinely makes, but were not observed six days after the first access.

The results when using a five-day lifetime were slightly lower than when using lifetimes of six
days. For filtering both training and testing sets on flow data, NB accuracy decreased by 2.3%
compared to the six-day filter, and KNN decreased by 6.4%. NB was about the same as the SL
analysis, but KNN increased by 9.5%, reaching 28.1%. When filtering just the training set for
src/dst pairs, the NB accuracy was 18.8%, which was 10.8% lower the when filtering out SL
accesses, and 3.6% higher than for a six-day lifetime. For KNN accuracies, when filtering just

44

mean daily accuracy with 5-day filter

Analysis Data
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

LL-5d flow
src/dst 398 3,038

train 18.8 9.4 20.5
train+test 32.5 14.2 28.1

dst-only 442 5,935
train 27.0 8.7 14.1

train+test 26.9 8.7 14.0

LL-5d dns
src/host 456 6,808

train 45.9 20.0 34.5
train+test 57.2 29.9 52.4

host-only 478 15,133
train 45.9 20.0 34.5

train+test 46.4 19.9 34.3

LL-5d dns (mod)
src/host 459 2,665

train 37.6 18.3 46.5
train+test 50.6 26.3 55.7

host-only 479 5,939
train 43.2 20.0 41.7

train+test 43.7 20.1 41.8

Table 4.5: Mean daily accuracy (percent) after filtering to keep LL accesses with
sliding-window lifetimes longer than 5 days (May 8-14). *Average numbers of
sources and destinations are for the filtered sets.

the training sets, the accuracy increased by 2.3% over the six-day LL filter, and and was 2.7%
higher than the SL analysis. See Figures 4.25, 4.26, 4.27, and 4.28.

DNS Data (Lifetime > 5 Days). For DNS data, the NB accuracy when filtering train/test sets
for src/dst pairs was 57.2%, which was slightly lower than for the six-day filter, and 5.2% higher
than the SL analysis. For KNN, the accuracy was 52.4%, which was 7.1% less than the six-day
filter, and 13.2% higher than the SL analysis. When filtering just the training set, NB 1.1%
lower than the SL analysis, though it was improved by 14.9% over the six-day filter. For the
modified DNS data, the trends were similar, though the values were different. See Figures 4.33
through 4.42.

Implications. The long-lived filter yielded larger increases in accuracy than the SL filter when
both the training and test sets were filtered, which make sense. For destination IPs or hostnames
to be retained by the LL filter, the access or query had to occur at least twice during the observed
period. In contrast, the SL accesses were inherently limited to one session, and so would not be
present in both a training set and test set. When testing or training on a day in which one of the
SL flows or hostnames is not seen, the effect is to create more “noise” that hinders accuracy. Of
note, when filtering just the training sets, the LL filters often fared worse than the SL filters. In

45

the SL analysis, filtering just the training set would have meant a training set with none of the SL
accesses, but all other accesses, including the LL and in-between accesses. With the LL filters,
however, the in-between accesses were no longer present in the training set but, of course, were
found in the unfiltered test sets. That the SL filters performed better in this scenario, combined
with the fact that the five-day filter often yieled higher accuracies than the six-day filter, seems
to imply that the access with lifetimes that are in-between SL and LL are rather important, at
least on a day-to-day level.

Also, it can be seen that the LL filter led to larger increases in accuracy for DNS queries than
for IP flows, although the relative ratio of flow accuracy to DNS hostname accuracy remained
about the same, at 0.586 for the six-day LL filter versus 0.582 for unfiltered data.

46

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train src/dst Filter 6d

NB
Tree
KNN

Figure 4.21: Day-to-day Accuracy (May
8-14) filtered training set for src/dst pair
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train/test src/dst Filter 6d

NB
Tree
KNN

Figure 4.22: Day-to-day Accuracy (May
8-14) filtering train/test sets for src/dst
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train dst-only Filter 6d

NB
Tree
KNN

Figure 4.23: Day-to-day Accuracy (May
8-14) filtering training set for dst-only
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train/test dst-only Filter 6d

NB
Tree
KNN

Figure 4.24: Day-to-day Accuracy (May
8-14) filtering train/test sets for dst-only
sliding-window lifetimes > 6 days.

47

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train src/dst Filter 5d

NB
Tree
KNN

Figure 4.25: Day-to-day Accuracy (May
8-14) filtered training set for src/dst pair
sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train/test src/dst Filter 5d

NB
Tree
KNN

Figure 4.26: Day-to-day Accuracy (May
8-14) filtering train/test sets for src/dst
sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train dst-only Filter 5d

NB
Tree
KNN

Figure 4.27: Day-to-day Accuracy (May
8-14) filtering training set for dst-only
sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Dly Flow Train/test dst-only Filter 5d

NB
Tree
KNN

Figure 4.28: Day-to-day Accuracy (May
8-14) filtering train/test sets for dst-only
sliding-window lifetimes > 5 days.

48

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filter src/host 6d

NB
Tree
KNN

Figure 4.29: Day-to-day Accuracy (May
8-14) filtering training set for src/host pair
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filter src/host 6d

NB Tree KNN

Figure 4.30: Day-to-day Accuracy (May
8-14) filtering train/test sets for src/host
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Acc Train Filter host-only 6d

NB
Tree
KNN

Figure 4.31: Day-to-day Accuracy (May
8-14) filtering training set for host-only
sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filter host-only 6d

NB
Tree
KNN

Figure 4.32: Day-to-day Accuracy (May
8-14) filtering train/test sets for host-only
sliding-window lifetimes > 6 days.

49

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filter src/host 5d

NB
Tree
KNN

Figure 4.33: Day-to-day Accuracy (May
8-14) filtering training set for src/host pair
slidinw-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filter src/host 5d

NB Tree KNN

Figure 4.34: Day-to-day Accuracy (May
8-14) filtering train/test sets for src/host
sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Acc Train Filter host-only 5d

NB
Tree
KNN

Figure 4.35: Day-to-day Accuracy (May
8-14) filtering training set for host-only
sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filter host-only 5d

NB
Tree
KNN

Figure 4.36: Day-to-day Accuracy (May
8-14) filtering train/test sets for host-only
sliding-window lifetimes > 5 days.

50

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train Filter src/host 6d

NB
Tree
KNN

Figure 4.37: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train/test Filter src/host 6d

NB Tree KNN

Figure 4.38: Day-to-day Accuracy (May 8-
14) filtering modified train/test sets for sr-
c/host sliding-window lifetimes > 6 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Acc Train Filter host-only 6d

NB
Tree
KNN

Figure 4.39: Day-to-day Accuracy (May
8-14) filtering modified DNS training set
for host-only sliding-window lifetimes > 6
days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train/test Filter host-only 6d

NB
Tree
KNN

Figure 4.40: Day-to-day Accuracy (May
8-14) filtering modified train/test sets for
host-only sliding-window lifetimes > 6
days.

51

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train Filter src/host 5d

NB
Tree
KNN

Figure 4.41: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train/test Filter src/host 5d

NB Tree KNN

Figure 4.42: Day-to-day Accuracy (May 8-
14) filtering modified train/test sets for sr-
c/host sliding-window lifetimes > 5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Acc Train Filter host-only 5d

NB
Tree
KNN

Figure 4.43: Day-to-day Accuracy (May
8-14) filtering training set for modified
DNS host-only sliding-window lifetimes >
5 days.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mods) Train/test Filter host-only 5d

NB
Tree
KNN

Figure 4.44: Day-to-day Accuracy (May
8-14) filtering modified train/test sets
for host-only sliding-window lifetimes >5
days.

4.4.4 Orange: Filter for Accesses Active for at Least X Days
For the at least X days tests, we filtered to retain accesses that were active for at least X days
during the week of May 8-14, 2013, where X ranged from three to six days. The tab files that
are the input for Orange contained a matrix of access frequency, weighted by tf-idf. However,

52

Flow: mean accuracy for at least X different days

Analysis
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

≥3 diff days
src/dst 404 3,034

train 25.0 10.3 27.7
train+test 39.0 15.6 36.0

dst-only 442 5,869
train 27.2 9.3 13.5

train+test 27.0 9.3 13.6

≥4 diff days
src/dst 381 2,285

train 21.8 9.4 28.1
train+test 41.1 18.5 43.7

dst-only 442 4,950
train 27.1 8.3 15.8

train+test 26.8 8.4 15.9

≥5 diff days
src/dst 343 1,721

train 17.6 11.2 27.3
train+test 42.7 25.1 52.2

dst-only 448 4,105
train 26.6 8.5 18.0

train+test 26.5 8.5 18.2

≥6 diff days
src/dst 289 1,187

train 13.0 10.2 23.2
train+test 39.4 30.0 54.3

dst-only 440 2,482
train 25.0 9.7 21.6

train+test 25.2 9.6 21.8

Table 4.6: Mean daily accuracy (percent) after filtering flow data to keep accesses that
were observed on at least 3, 4, 5, or 6 separate days (May 8-14). *Average numbers
of sources and destinations are for the filtered sets.

these frequencies are aggregated over the whole testing or training period, and do not reflect
whether the accesses were regular visits that might be a marker of usual network behavior, or
whether the accesses were part of a short flurry of visits.

For example, suppose during a certain period, a user visited site A three times on the first day
and three times on the last day (with no visits in between), and also visited site B for six days in
a row, one time each day. Further suppose that sites A and B have the same relative frequency
across all users. Then, A and B could register the same tf-idf score, since the two sites have
the same total number of visits during this observation period. Additionally, under the previous
method using lifetime-based filters, despite being accessed in a rather different manner, both
site A and B would have lifetimes of six days, which could improperly weight their importance.
With the at least X days method, however, site A would register as having been visited on two
distinct days, and B would have a visit-count of six distinct days, more clearly indicating that
B is a regularly visited destination. Certainly, for the “train on one day, test on the next day”

53

DNS: mean accuracy for at least X different days

Analysis
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

≥3 different days
src/host 457 7,282

train 44.0 22.0 53.2
train+test 60.0 29.2 58.2

host-only 478 14,731
train 45.9 21.2 35.0

train+test 46.0 20.8 35.1

≥4 different days
src/host 442 5,146

train 41.4 22.9 56.6
train+test 63.8 33.1 67.7

host-only 477 11,841
train 46.0 20.4 37.2

train+test 46.7 20.8 37.5

≥5 different days
src/host 416 3,749

train 37.8 23.5 57.8
train+test 65.5 39.1 77.8

host-only 476 9,024
train 45.8 20.9 41.5

train+test 46.0 21.4 41.9

≥6 different days
src/host 366 1,979

train 32.2 23.2 58.1
train+test 69.6 44.2 86.5

host-only 476 4,544
train 45.2 22.1 43.8

train+test 45.8 22.2 43.8

Table 4.7: Mean daily accuracy (percent) after filtering DNS data to keep accesses that
were observed on at least 3, 4, 5, or 6 separate days (May 8-14). *Average numbers
of sources and destinations are for the filtered sets.

model, site A would not contribute any information to help identify the source, because (unlike
site B), A was never accessed on two consecutive days and, thus, would never be present in
adjacent training and testing sets.

Flow Data. When filtering both training and test sets to retain flow accesses that were observed
on at least 3 days, the NB accuracy started at 39.0%, which was 4.2% higher than when using
the six-day lifetime, and 11.9% larger than with unfiltered data. NB increased by about 2% for
a filter of ≥4 days, then increased to a high of 42.7% with a filter of at least five days, before
falling to 39.4% with a filter of ≥6 days. The Tree and KNN classifiers steadily increased with
each successive filter, with KNN achieving a high of 54.3%, using a filter of ≥6 days. The
number of sources in the filtered sets started at a mean of 404 (91% of unfiltered sources) for
the “at least three days” test. The mean sources decreased as the filter became more stringent,
until reaching 289 mean sources (65% of unfiltered). See Table 4.6 and Figures 4.46, 4.50, 4.54,
and 4.58).

54

DNS (mod): mean accuracy for at least X different days

Analysis
Type of *Avg # of Set(s)

NB Tree KNN
Filter srcs dsts Filtered

≥3 diff days
src/host 459 2,768

train 42.1 21.9 53.5
train+test 53.0 28.3 59.2

host-only 479 5,690
train 43.4 20.4 43.5

train+test 43.6 20.5 43.5

≥4 diff days
src/host 444 1,984

train 39.2 19.3 54.9
train+test 55.5 29.6 66.8

host-only 479 4,478
train 43.4 20.9 45.7

train+test 43.7 21.0 45.7

≥5 diff days
src/host 420 1,424

train 36.2 18.7 54.8
train+test 59.5 33.1 75.8

host-only 479 3,322
train 43.4 19.9 49.1

train+test 43.8 19.5 49.1

≥6 diff days
src/host 368 715

train 31.4 18.4 54.9
train+test 63.8 40.9 85.3

host-only 478 1,626
train 43.2 20.1 50.7

train+test 43.4 20.0 50.8

Table 4.8: Mean daily accuracy (percent) after filtering modified flow data to keep ac-
cesses that were observed on at least 3, 4, 5, or 6 separate days (May 8-14). *Average
numbers of sources and destinations are for the filtered sets.

DNS Data. When using DNS data, the NB accuracy increased with each filter, from 60.0% for
≥3 days, to a high of 69.6% for at least 6 days when applied to src/hostname pairs in both the
training and test sets. Tree and KNN also increased with each filter, with KNN reaching a mean
accuracy of 86.5% for a filter of ≥6 days. With the modified DNS hostnames, the NB and Tree
accuracies were consistently lower than when using the unmodified hostnames, with a best for
NB of 63.8%. On the other hand, the identification accuracies using KNN were just slightly
under the KNN accuracies for the unmodified DNS queries, with a maximum value of 85.3%.
As with the flow data, there was a decrease in the mean number of sources after the filter was
applied, although the proportion of sources was higher with DNS data. The largest decrease
was with the filter of at least six days, with a mean of 366 sources for DNS (368 for modified
DNS), which is roughly 76% of the unfiltered sources (see Figures 4.62, 4.66, 4.70, 4.74, 4.78,
4.82, 4.86, 4.90).

55

Discussion. The general trend (for both flow data and DNS data) is that, as the filter becomes
more strict with the minimum different days on which to observe a flow or hostname, the mean
accuracy increases, but the mean number of observed sources decreases. Thus, the method
could be described as being more accurate at identifying fewer sources. Another trend is that
KNN noticeably replaces NB as the most accurate classifier, achieving not only the highest
mean accuracies for the week, but also the highest accuracy for each day of the week. Addi-
tionally, as the minimum number of days increases, the accuracy graphs for NB, Tree, and KNN
become stratified. We again see that filtering on both the training and test sets using src/dst or
src/hostname pairs yields higher accuracies than just filtering the training set. As with the SL
and LL filters, when keying off of just the destination IPs or DNS query hostnames, there was
only a slight difference between filtering the training set only, or both training and test sets.

56

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt src/dst ≥3 diff days

NB
Tree
KNN

Figure 4.45: Day-to-day Accuracy (May
8-14) filtering training set for src/dst pairs
that were seen at least 3 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥3 diff days

NB
Tree
KNN

Figure 4.46: Day-to-day Accuracy (May
8-14) filtering training/test sets for src/dst
pairs that were seen at least 3 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filter dst-only ≥3 diff days

NB
Tree
KNN

Figure 4.47: Day-to-day Accuracy (May
8-14) filtering training set for dst-only IPs
that were seen at least 3 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt dst-only ≥3 diff days

NB
Tree
KNN

Figure 4.48: Day-to-day Accuracy (May 8-
14) filtering training/test sets for dst-only
IPs that were seen at least 3 different days
during the week.

57

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt src/dst ≥4 diff days

NB
Tree
KNN

Figure 4.49: Day-to-day Accuracy (May
8-14) filtering training set for src/dst pairs
that were seen at least 4 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥4 diff days

NB
Tree
KNN

Figure 4.50: Day-to-day Accuracy (May
8-14) filtering training/test sets for src/dst
pairs that were seen at least 4 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt dst-only ≥4 diff days

NB
Tree
KNN

Figure 4.51: Day-to-day Accuracy (May
8-14) filtering training set for dst-only IPs
that were seen at least 4 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt dst-only ≥4 diff days

NB
Tree
KNN

Figure 4.52: Day-to-day Accuracy (May 8-
14) filtering training/test sets for dst-only
IPs that were seen at least 4 different days
during the week.

58

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt src/dst ≥5 diff days

NB
Tree
KNN

Figure 4.53: Day-to-day Accuracy (May
8-14) filtering training set for src/dst pairs
that were seen at least 5 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥5 diff days

NB
Tree
KNN

Figure 4.54: Day-to-day Accuracy (May
8-14) filtering training/test sets for src/dst
pairs that were seen at least 5 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt dst-only ≥5 diff days

NB
Tree
KNN

Figure 4.55: Day-to-day Accuracy (May
8-14) filtering training set for dst IPs that
were seen at least 5 different days during
the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥5 diff days

NB
Tree
KNN

Figure 4.56: Day-to-day Accuracy (May 8-
14) filtering training/test sets for dst-only
IPs that were seen at least 5 different days
during the week.

59

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt src/dst ≥6 diff days

NB
Tree
KNN

Figure 4.57: Day-to-day Accuracy (May
8-14) filtering training set for src/dst pairs
that were seen at least 6 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥6 diff days

NB
Tree
KNN

Figure 4.58: Day-to-day Accuracy (May 8-
14) filtering training/test sets for dst-only
IPs that were seen at least 6 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train Filt src/dst ≥6 diff days

NB
Tree
KNN

Figure 4.59: Day-to-day Accuracy (May
8-14) filtering training set for dst-only IPs
that were seen at least 6 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
Flow Train/test Filt src/dst ≥6 diff days

NB
Tree
KNN

Figure 4.60: Day-to-day Accuracy (May 8-
14) filtering training/test sets for dst-only
IPs that were seen at least 6 different days
during the week.

60

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥3 diff days

NB
Tree
KNN

Figure 4.61: Day-to-day Accuracy (May 8-
14) filtering training set for src/host pairs
that were seen at least 3 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥3 diff days

NB
Tree
KNN

Figure 4.62: Day-to-day Accuracy (May
8-14) filtering training/test sets for src/host
pairs that were seen at least 3 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt host-only ≥3 diff days

NB
Tree
KNN

Figure 4.63: Day-to-day Accuracy (May 8-
14) filtering training set for hosts-only that
were seen at least 3 different days during
the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt host-only ≥3 diff days

NB
Tree
KNN

Figure 4.64: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 3 different days dur-
ing the week.

61

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥4 diff days

NB
Tree
KNN

Figure 4.65: Day-to-day Accuracy (May 8-
14) filtering training set for src/host pairs
that were seen at least 4 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥4 diff days

NB
Tree
KNN

Figure 4.66: Day-to-day Accuracy (May
8-14) filtering training/test sets for src/host
pairs that were seen at least 4 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt host-only ≥4 diff days

NB
Tree
KNN

Figure 4.67: Day-to-day Accuracy (May 8-
14) filtering training set for hosts-only that
were seen at least 4 different days during
the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt host-only ≥4 diff days

NB
Tree
KNN

Figure 4.68: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 4 different days dur-
ing the week.

62

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥5 diff days

NB
Tree
KNN

Figure 4.69: Day-to-day Accuracy (May 8-
14) filtering training set for src/host pairs
that were seen at least 5 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥5 diff days

NB Tree KNN

Figure 4.70: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 5 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥5 diff days

NB
Tree
KNN

Figure 4.71: Day-to-day Accuracy (May 8-
14) filtering training set for hosts-only that
were seen at least 5 different days during
the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥5 diff days

NB
Tree
KNN

Figure 4.72: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 5 different days dur-
ing the week.

63

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥6 diff days

NB
Tree
KNN

Figure 4.73: Day-to-day Accuracy (May 8-
14) filtering training set for src/host pairs
that were seen at least 6 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥6 diff days

NB Tree KNN

Figure 4.74: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 6 different days dur-
ing the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train Filt src/host ≥6 diff days

NB
Tree
KNN

Figure 4.75: Day-to-day Accuracy (May 8-
14) filtering training set for hosts-only that
were seen at least 6 different days during
the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS Train/test Filt src/host ≥6 diff days

NB
Tree
KNN

Figure 4.76: Day-to-day Accuracy (May 8-
14) filtering training/test sets for hosts-only
that were seen at least 6 different days dur-
ing the week.

64

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train src/host ≥3 diff days

NB
Tree
KNN

Figure 4.77: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host pairs that were seen at least 3 differ-
ent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test src/host ≥3 diff days

NB
Tree
KNN

Figure 4.78: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
src/host pairs that were seen at least 3 dif-
ferent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train host-only ≥3 diff days

NB
Tree
KNN

Figure 4.79: Day-to-day Accuracy (May 8-
14) filtering modified training set for hosts-
only that were seen at least 3 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test host-only ≥3 diff days

NB
Tree
KNN

Figure 4.80: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
hosts-only that were seen at least 3 differ-
ent days during the week.

65

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train src/host ≥4 diff days

NB
Tree
KNN

Figure 4.81: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host pairs that were seen at least 4 differ-
ent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test src/host ≥4 diff days

NB
Tree
KNN

Figure 4.82: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
src/host pairs that were seen at least 4 dif-
ferent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train host-only ≥4 diff days

NB
Tree
KNN

Figure 4.83: Day-to-day Accuracy (May 8-
14) filtering modified training set for hosts-
only that were seen at least 4 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test host-only ≥4 diff days

NB
Tree
KNN

Figure 4.84: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
hosts-only that were seen at least 4 differ-
ent days during the week.

66

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train src/host ≥5 diff days

NB
Tree
KNN

Figure 4.85: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host pairs that were seen at least 5 differ-
ent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test src/host ≥5 diff days

NB Tree KNN

Figure 4.86: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
src/host pairs that were seen at least 5 dif-
ferent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train host-only ≥5 diff days

NB
Tree
KNN

Figure 4.87: Day-to-day Accuracy (May 8-
14) filtering modified training set for hosts-
only that were seen at least 5 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test host-only ≥5 diff days

NB
Tree
KNN

Figure 4.88: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
hosts-only that were seen at least 5 differ-
ent days during the week.

67

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train Filt src/host ≥6 diff days

NB
Tree
KNN

Figure 4.89: Day-to-day Accuracy (May
8-14) filtering modified training set for sr-
c/host pairs that were seen at least 6 differ-
ent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test Filt src/host ≥6 diff days

NB Tree KNN

Figure 4.90: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
src/host pairs that were seen at least 6 dif-
ferent days during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train Filt host-only ≥6 diff days

NB
Tree
KNN

Figure 4.91: Day-to-day Accuracy (May 8-
14) filtering modified training set for hosts-
only that were seen at least 6 different days
during the week.

Thur Fri Sat Sun Mon Tues
0

0.2

0.4

0.6

0.8

1
DNS (mod) Train/test Filt host-only ≥6 diff days

NB
Tree
KNN

Figure 4.92: Day-to-day Accuracy (May 8-
14) filtering modified training/test sets for
hosts-only that were seen at least 6 differ-
ent days during the week.

4.5 Orange: MDI
In this analysis, we created the training files by using multiple daily instances. For each day,
all accesses within that day were aggregated, as in the “train on one day, test on the next day”

68

Unfiltered MDI

Data
of daily Train: # of Test: # of

NB Tree KNN
instances srcs dsts srcs dsts

flow

2 531 16,438 461 10,477 3.2 21.9 11.5
3 545 19,714 339 3,361 0.6 23.9 14.2
4 547 20,162 330 2,584 0.3 40.0 30.0
5 548 20,358 482 11,774 0.4 27.8 17.8
6 573 23,697 531 11,899 1.5 27.1 17.1

DNS

2 560 55,366 497 29,885 3.2 40.6 27.2
3 565 67,119 387 6,297 1.0 48.8 39.0
4 566 68,205 378 4,886 0.5 76.5 54.0
5 566 68,946 527 40,929 0.4 53.3 37.8
6 582 86,903 534 40,900 1.3 55.4 35.8

DNS (mod)

2 560 24,616 497 12,515 3.2 42.5 35.2
3 565 30,196 387 2,244 0.5 54.8 51.4
4 566 30,629 378 1,840 0.0 75.9 66.7
5 566 30,959 527 19,487 0.0 52.0 46.9
6 582 41,107 534 19,263 1.3 55.4 45.5

Table 4.9: Accuracy (percent) using Multiple Daily Instances for the training sets (May 8-14).
The x-axis indicates the test day; the number in parentheses is the number of daily instances
(ranging from two when testing on Friday, to six when testing on Tuesday.

method. Each aggregated day was then added to subsequent, adjacent days to create a training
file with multiple daily instances. The effect is similar to concatenating multiple tab files, each
containing daily instances, to create a larger training file. The test set remained as a tab file of
daily instances immediately following the final day in the training set, as in §4.4 and §4.4.4.

4.5.1 MDI: Unfiltered
When running Orange on the unfiltered unfiltered Multiple Daily Instances, the shapes of the
accuracy graphs for Tree and KNN were reminiscent of using the single daily instances, with
a sharp increase on Sunday, followed by a decrease on Monday. However, the NB accuracy
was terrible for all analyses, hovering near the x-axis. Under the single daily instances method,
NB provided the highest accuracy for all unfiltered analyses. With all the unfiltered analyses,
the highest accuracy values occurred when testing on Sunday, with four daily instances in the
training set, and then fell on the following day. This is likely due to fewer training instances
being present in Sunday’s test set, making identification easier (see Table 4.9).

69

Flow Data. Under the MDI method with a two-day training set, the NB was only 3.3%, which
was the highest accuracy for the unfiltered MDI flow accuracy. The NB accuracy decreased with
additional day added to the training set, reaching a low of 0.3% when testing on Sunday with a
four-day training set, before recovering slightly on the final testing day to 1.5% (Figure 4.93).
With the previous method using single daily instances, the unfiltered NB accuracy achieved a
mean value of 27.1% for the week.

Another difference was that the Tree classifier recorded the highest accuracy for each test, with
a low of 21.9% for a two-day training set, and a high of 40.0% with a training set composed of
four days. Using unfiltered single daily instances, Tree yielded a mean of 8.5% for the week.
KNN likewise improved over single daily instances, though not by as large a margin as Tree.
The lowest accuracy for KNN was 13.2% on Friday, and a maximum of 30.0% on Sunday,
compared to a mean of 13.5% for unfiltered single daily instances.

DNS Data. Using DNS queries in the datasets, the Tree classifier returned the highest accu-
racies, with a maximum value of 76.8% with four daily instances in the training set, and a
minimum of 40.6% for two daily instances. (Figure 4.94). The results for KNN mimicked Tree
in terms of the shape of the graph, but was lower for each test. KNN returned a maximum of
54.0% and a minimum of 27.2%. As was seen with flow data, the NB accuracy again yielded
extremely poor results, with a high of 4.8%. When using unfiltered single daily instances, NB
yielded a mean accuracy of 46.5%, Tree had 20.3%, and KNN returned a mean of 30.9%.

DNS (mod) Data. As with the flow data, the Tree classifier performed the best, with a minimum
accuracy of 42.5% for a two-day training set, and a max of 75.9% on Sunday, (Figure 4.95),
which was considerably higher than the unfiltered single daily instances, when Tree had a mean
accuracy of 20.7%. NB again performed extremely poorly, with a maximum value of 3.2%
with a two-day training set. Like the Tree classifier, KNN likewise improved on the mean
accuracy for single daily instance method, with an MDI maximum of 66.7% and a low of
35.2%, compared to a mean of 40.0% for unfiltered single daily instances.

70

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
Flow: MDI Unfiltered

NB
Tree
KNN

Figure 4.93: Flow Accuracy using unfil-
tered MDI; all days (May 8-14) prior to
the test day are included in the training set.
Numbers of daily instances are indicated in
parentheses.

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
DNS: MDI Unfiltered

NB
Tree
KNN

Figure 4.94: DNS Accuracy using unfil-
tered MDI; all days (May 8-14) prior to
the test day are included in the training set.
Number of daily instances are indicated in
parentheses.

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
DNS (mod): MDI Unfiltered

NB
Tree
KNN

Figure 4.95: DNS (modified hostnames)
Accuracy using unfiltered MDI; all days
(May 8-14) prior to the test day are in-
cluded in the training set. Number of daily
instances are indicated in parentheses.

71

Flow MDI: lifetime ≥ six days
of daily type of Train: # of Test: # of Set(s)

NB Tree KNN
instances filter srcs dsts srcs dsts Filtered

2
src/dst 416 3,054

461 10,477 train 1.5 13.9 13.9
386 2,294 train+test 3.9 30.1 27.8

dst-only 528 6,278
461 10,477 train 3.2 24.1 14.5
459 5,131 train+test 3.2 23.1 14.6

3
src/dst 433 3,295

339 3,361 train 0.3 20.6 21.5
297 1,275 train+test 1.3 32.3 32.3

dst-only 541 6,569
339 3,361 train 5.9 27.7 15.6
337 2,507 train+test 0.6 27.3 15.7

4
src/dst 435 3,334

330 2,584 train 0.0 26.7 26.7
286 1,213 train+test 0.7 45.5 45.5

dst-only 543 6,623
330 2,584 train 0.3 40.3 32.4
329 2,082 train+test 0.3 40.4 32.5

5
src/dst 436 3,342

482 11,774 train 0.6 14.9 19.1
406 2,374 train+test 3.7 47.5 49.0

dst-only 544 6,633
482 11,774 train 0.4 24.9 20.5
480 5,523 train+test 0.4 24.6 20.8

6
src/dst 444 3,383

531 11,899 train 0.8 19.4 36.7
423 3,217 train+test 1.9 53.7 71.9

dst-only 568 6,649
531 11,899 train 1.5 26.0 23.7
528 6,427 train+test 1.5 25.9 24.2

Table 4.10: Flow Accuracy (percent) using Multiple Daily Instances filtering for flows that have
sliding-window lifetimes of six days or more (May 8-14).

4.5.2 MDI: Lifetime > 6 days
For this analysis, the training and test sets were filtered to retain only src/dst or src/hostname
pairs that had sliding-window lifetimes longer than six days. Based on the results using sin-
gle daily instances, we only present graphs for filtering src/dst or src/hostname pairs on both
training and test sets, as they yielded the highest accuracy gains.

Flow Data. As with the unfiltered MDI for flow data, the NB classifier performed rather poorly,
with a high of 3.9% and a low of 0.7%. These numbers are only slightly higher than unfiltered
flow data. The Tree and KNN classifiers, however, displayed steady improvement as the number
of instances in the training set increased. These improvements were exhibited even on Monday,
when the Tree accuracy for DNS and modified DNS decreased slightly. The Tree classifier
showed a minimum accuracy of 30.1% when the training set had two daily instances. The

72

DNS MDI: lifetime ≥ six days
of daily type of Train: # of Test: # of Set(s)

NB Tree KNN
instances filter srcs dsts srcs dsts Filtered

2
src/dst 515 10,159

497 29,885 train 1.6 23.1 35.6
457 5,174 train+test 5.2 56.7 59.5

dst-only 559 16,475
497 29,885 train 3.6 46.3 30.8
495 12,849 train+test 3.6 46.5 31.1

3
src/dst 523 11,123

387 6,297 train 0.7 35.1 45.0
360 2,237 train+test 1.1 55.3 58.6

dst-only 563 17,325
387 6,297 train 1.0 52.7 39.0
386 4,401 train+test 1.0 53.4 38.9

4
src/dst 523 11,224

378 4,886 train 0.5 46.6 56.9
352 2,095 train+test 0.6 82.4 71.9

dst-only 564 17,354
378 4,886 train 0.5 72.2 52.9
376 3,517 train+test 0.5 72.9 52.4

5
src/dst 523 11,237

527 40,929 train 0.4 32.6 45.2
474 5,433 train+test 2.5 73.4 75.3

dst-only 564 17,363
527 40,929 train 0.3 51.8 38.1
524 13,956 train+test 0.4 52.3 37.8

6
src/dst 527 11,314

534 40,900 train 0.4 38.6 62.5
485 7,129 train+test 0.8 79.2 90.1

dst-only 578 17,406
534 40,900 train 1.3 57.5 44.9
525 16,603 train+test 1.3 57.7 45.5

Table 4.11: DNS Accuracy (percent) using MDI filtering for DNS queries that have sliding-
window lifetimes of six days or more (May 8-14).

maximum accuracy for Tree was seen on Tuesday at 53.7%, which is 13.7% higher than the
max with unfiltered MDI data, and 36.2% higher than single daily instances that were filtered
for six-day lifetimes. For KNN, the high and low accuracies were 27.7% on Friday and 71.9%
on Tuesday, the latter value being 41.9% higher than unfiltered MDI and 37.5% higher than
single daily instances filtered for six-day lifetimes (see Table 4.10 and Figure 4.96).

DNS Data. When using DNS query data, NB again was quite low, with a max of 2.5%. The
Tree and KNN classifiers performed better, and displayed similar behavior with each other as
the numbers of instances in the training sets increased. Interestingly, the lowest accuracy for
both Tree and KNN occurred on Saturday, with three instances in the training set. Unlike the
flow data, which increased with every added daily instance, the Tree classifier had a maximum
accuracy of 82.4% on Sunday, with four daily instances in the training set, although it recovered

73

DNS (mods) MDI: lifetime ≥ six days
of daily type of Train: # of Test: # of Set(s)

NB Tree KNN
instances filter srcs dsts srcs dsts Filtered

2
src/dst 495 2692

497 12,515 train 2.2 20.9 35.8
461 1,905 train+test 4.8 56.8 60.7

dst-only 560 6381
497 12,515 train 3.4 38.2 38.0
496 4,867 train+test 3.4 39.3 38.3

3
src/dst 501 2903

387 2,244 train 0.3 33.1 43.9
360 735 train+test 0.3 51.1 63.6

dst-only 564 6812
387 2,244 train 0.5 46.3 49.4
387 1,478 train+test 0.5 46.5 49.4

4
src/dst 501 2916

378 1,840 train 0.0 46.0 56.3
354 712 train+test 0.0 79.9 78.8

dst-only 565 6823
378 1,840 train 0.0 73.3 64.8
377 1,478 train+test 0.0 73.2 65.0

5
src/dst 501 2918

527 19,487 train 0.4 30.2 44.2
477 2,031 train+test 2.1 68.1 75.7

dst-only 565 6826
527 19,487 train 0.0 50.7 44.6
525 5,361 train+test 0.0 50.9 45.1

6
src/dst 505 2937

534 19,263 train 0.4 30.9 59.2
487 2,805 train+test 1.0 78.4 87.9

dst-only 579 6842
534 19,263 train 1.3 53.7 49.8
528 6,437 train+test 1.3 54.4 50.9

Table 4.12: DNS (mod) Accuracy (percent) using MDI filtering for modified DNS hostnames
having sliding-window lifetimes of six days or more (May 8-14).

to 79.2% when using six daily instances. The minimum for tree was on Saturday, at 55.3%. With
the exception of a slight decrease of 0.9% from Friday to Saturday, KNN, generally continued to
improve with each additional instance added to the training set, reaching a maximum accuracy
of 90.1% on Tuesday. This value is 54.3% higher than when using unfiltered MDI, and 30.6%
better than the six-day filter for single daily instances. (see Table 4.11 and Figure 4.97).

DNS (mod) Data. The results using modified DNS hostnames were generally less accurate than
unmodified DNS data when using the Tree classifier, and more accurate with KNN. As with the
unmodified DNS data, the Tree classifier again hit a minimum accuracy on Saturday, this time
at 51.5% before hitting 79.9% the following day. KNN increased with each successive addition
of training instances, except for a small dip on Monday, followed by the maximum accuracy on
Tuesday of 87.9% (see Table 4.12 and Figure 4.98).

74

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
MDI Flow, 6d LL Filter train/test sets

NB Tree KNN

Figure 4.96: MDI Flow Accuracy retaining
only long-lived src/host pairs in both the
training and test sets (May 8-14). Numbers
of daily instances are indicated in paren-
theses.

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
MDI DNS, 6d LL Filter train/test sets

NB
Tree
KNN

Figure 4.97: MDI DNS Accuracy retain-
ing only long-lived src/dst pairs in both the
training and test sets (May 8-14). Numbers
of daily instances are indicated in paren-
theses.

Fri(2) Sat(3) Sun(4) Mon(5) Tue(6)
0

0.2

0.4

0.6

0.8

1
MDI DNS (mod), 6d LL Filter train/test sets

NB
Tree
KNN

Figure 4.98: MDI DNS (mod) Accuracy
retaining only long-lived src/host pairs in
both the training and test sets (May 8-14).
Numbers of daily instances are indicated in
parentheses.

75

4.5.3 Implications
The NB results for MDI were extremely low, even when only retaining long-lived accesses and
DNS queries. This is in sharp contrast to the results of single daily instances, wherein NB
accuracy performed rather well, and displayed great increases in accuracy when only retaining
the LL flows.

For training sets composed of two, three, and four days, the Tree and KNN accuracy increase,
which seems to suggest that the extra information adds to the classifiers’ ability to correctly
predict a class, at least in the short term. The significant drop with a five-day unfiltered training
set might suggest that the behavior of users in our dataset is sufficiently different from one week
to the next that large training sets will incorporate large amounts of irrelevant data that serves
as noise. The amount of noise would then increase with the number of days in the training set.
It could also reflect the same feature as the single daily instances, where fewer users on the
weekend led to higher accuracies for those days. As seen in Table 4.9, the numbers of sources
in the test sets on Saturday and Sunday are considerably lower than on weekdays. To that end,
it is likely that the users on the weekend were present on some weekdays, so having trained
on a larger set made identification of these few users easier. That said, it can also be seen that
Tree and KNN accuracies were higher on Monday (with a five-day training set) than on the
previous Friday, which had a two-day training set; with the single daily instances, the accuracy
on Monday was significantly lower than on any other day. Thus, even with the unfiltered MDI,
it would appear that more instances in the training sets serves to increase accuracy.

This relationship seems to be supported by the analysis using the filtered training and test sets
(Tables 4.10, 4.11, and 4.12). The accuracy Monday is still lower than on Sunday, but is sig-
nificantly higher that other previous days, and continues to increase with each added day in the
training set.

4.6 Associated ASNs for Flow Data
For each unique source/destination IP and unique destination IP (irrespective of source) ob-
served in May 8-14, we looked up the Autonomous System Number (ASN) announcing the
most specific BGP prefix corresponding to the destination IP. We then determined which ASNs
were the most popular in our dataset when considering just the short-lived accesses, just the
long-lived accesses, and the dataset as a whole. We then obtained the organization name for the
top ten most popular ASNs for each group by querying the Regional Internet Registry (RIR)
whois databases.

76

4.6.1 Top-ten ASes for src/dst IP Pairs
There were 2,541 unique ASNs for the week of May 8-14, 2013. Table 4.13 shows the ten
most commonly visited ASes when considering src/dst pairs. Unsurprisingly, Amazon, Google,
Microsoft, and various CDNs are present in the list. In Table 4.14 are shown the ten most
commonly visited ASes among the SL src/dst pairs. Note that here we are investigating the SL
pairs themselves, vice omitting them as we did with the accuracy analyses in §4.4 and §4.5.

Comparing SL ASes to All ASes. Interestingly, the popular ASes for short-lived traffic are
very similar to the popular ASes for all src/dst accesses, with only one different AS in the top-
ten list. The discrepancy is that the top-ten list for all flows contains an AS for the California
State University (CSU) Network (ranked #13 with 1.42% for SL flows), and the top-ten list for
SL flows has an AS for Comcast (ranked #11 with 1.66% for all flows). It makes sense that the
top ASes for the SL flows would be near the top, as SL flows accounted for roughly 50% of the
total number of flows (§4.1.1). That the top-ten ASes for SL flows are virtually identical, with
the different ASes being present just outside the top-ten list, indicates that even SL flows are
destined for the overall popular ASes.

Comparing LL ASes to All ASes. Table 4.15 shows the top-ten ASes from just the long-lived
flows with sliding-window lifetimes of more than six days. There are two differences with the
top-ten ASes for all flows. The ninth and tenth most popular ASes for the full list are AppNexus
(ranked #29 with 0.60% on the LL list) and Level 3 Communications (ranked #11 with 1.85%
for LL flows). For the LL list of ASes, the third most popular AS is 0, indicating private IP
space (#14 with 1.48% on the full list), and the seventh most popular long-lived AS is Edgecast
Networks (#15 with 1.43% on the full list).

Comparing LL ASes to SL ASes. Comparing the ASes for long-lived flows with ASes for
short-lived flows, we see three discrepancies. AppNexus, Level 3 Communications, and Com-
cast are present in the SL list, but ranked 29th (0.60%), 13th (1.85%), and 12th (1.76%), re-
spectively, on the LL list. Conversely, the LL list had ASes for the CSU Network, private IP
space, and EdgeCast Networks, which ranked 13th (1.42%), 14th (1.17%), and 19th (0.82%),
respectively, on the SL list.

The similarity between the long-lived and short-lived lists is interesting. Nine of the SL ASes
were present within the top twelve of long-lived ASes, and nine of the LL ASes were within
the top 14 of the SL ASes. Unlike the full list of ASes, the SL flows are not present in the list

77

ASN Percentage Organization
14618 11.43 Amazon.com, Inc.
15169 10.19 Google Inc.
16509 10.01 Amazon.com, Inc.
8075 4.08 Microsoft Corp
2152 3.91 California State University Network
2914 3.84 Akamai Technologies, Inc. & NTT America, Inc.
20940 2.97 Akamai Technologies, Inc.
36351 2.83 SoftLayer Technologies Inc.
29990 2.65 AppNexus, Inc
3356 1.73 Level 3 Communications, Inc.

Table 4.13: Top 10 ASes for a one-week sliding window of all src/dst accesses (May 8-14).

ASN Percentage Organization
14618 13.41 Amazon.com, Inc.
16509 12.02 Amazon.com, Inc.
15169 7.68 Google Inc.
8075 4.05 Microsoft Corp
2914 4.04 Akamai Technologies, Inc. & NTT America, Inc.
29990 3.50 AppNexus, Inc
20940 3.10 Akamai Technologies, Inc.
36351 2.98 SoftLayer Technologies Inc.
7922 1.81 Comcast Cable Communications, Inc.
3356 1.58 Level 3 Communications, Inc.

Table 4.14: Top 10 ASes for short-lived destination IPs for a one-week sliding window of src/dst
pairs during May 8-14.

of LL flows. The resemblance between the two lists indicates that most flows have destination
IP addresses belonging to the same ASes, regardless of whether the dst IP is visited frequently
or rarely by the user. The differences between the LL and SL AS lists are likewise interesting,
albeit understandable. The CSU Network accounted for 13.42% of all long-lived flows, but
only 1.42% of all SL flows. This seems to make sense, as the IPs for NPS belong to the CSU
AS, and NPS websites would obviously be regularly accessed by NPS students and faculty.

4.6.2 Top-ten Common ASes for dst-only IP Addresses
Similar to §4.6.1, for each unique destination IP, irrespective of source, we looked up the Au-
tonomous System Number and organization name. There were still 2541 unique ASNs, but the
popularity rankings were slightly different.

78

ASN Percentage Organization
15169 15.51 Google Inc.
2152 13.42 California State University Network

0 6.34 private IP space
14618 4.54 Amazon.com, Inc.
8075 4.09 Microsoft Corp
16509 3.98 Amazon.com, Inc.
15133 3.26 EdgeCast Networks, Inc.
36351 2.33 SoftLayer Technologies Inc.
20940 2.18 Akamai Technologies, Inc.
2914 2.13 Akamai Technologies, Inc. & NTT America, Inc.

Table 4.15: Top 10 ASes for long-lived (more than 5 days) src/dst pairs for a one-week sliding
window during May 8-14.

Comparing SL ASes to All ASes. The top-ten list for the full list of destination IPs, regardless
of source, was similar to the AS list for SL flows. Of note, Google did not break the top-ten
for short-lived ASes, but was #15 with 1.04%. As with the full list of ASes, Rackspace Hosting
had 1.25% on the SL list of ASes, but was slightly lower in ranking at #12. Looking at the SL
top-ten, GoDaddy.com was #12 (1.10%) for the full list, and CloudFlare was #11 (1.11%). As
with the src/dst AS comparison, it is not surprising that the full list and the SL list would be
somewhat similar, as the SL flows accounted for 40% of all flows. That the remaining 60% did
not change the rankings much indicates the overall popularity of these ASes.

Comparing LL ASes to All ASes. The top-ten list of long-lived ASes had nine of the top-ten
ASes for all flows. Rackspace Hosting was tenth on the full list, but 16th on the LL list, with
0.86%. The LL AS list instead had AppNexus in the tenth spot, which was #14 on the full list
at 0.80%.

Comparing LL ASes to SL ASes. The comparison of long-lived ASes to short-lived ASes
reveals two discrepancies. The AS for Google was the fourth most popular AS for LL flows
with 5.97%, but was #16 for SL ASes (1.04%). AppNexus ranked tenth (1.49%) for LL ASes,
but was #90 (0.13%) for SL ASes. Conversely, GoDaddy.com and CloudFlare, seventh (1.85%)
and eighth (1.63%) on the SL list were #43 (0.28%) and #24 (0.55%) on the LL list. This could
be explained by the regularity with which users tend to visit Google websites, including the
popular searching and mail programs.

79

ASN Percentage Organization
14618 9.89 Amazon.com, Inc.
16509 7.66 Amazon.com, Inc.

0 4.33 private IP space
2914 4.10 Akamai Technologies, Inc. & NTT America, Inc.
15169 3.71 Google Inc.
7922 3.03 Comcast Cable Communications, Inc.
36351 2.71 SoftLayer Technologies Inc.
8075 2.15 Microsoft Corp
20940 1.93 Akamai Technologies, Inc.
33070 1.25 Rackspace Hosting

Table 4.16: Top 10 ASes for a one-week sliding window of all dstIP accesses, irrespective of
source IP (May 8-14).

ASN Percentage Organization
16509 7.35 Amazon.com, Inc.
14618 5.55 Amazon.com, Inc.
2914 4.36 Akamai Technologies, Inc. & NTT America, Inc.

0 3.55 private IP space
7922 3.54 Comcast Cable Communications, Inc.
36351 2.96 SoftLayer Technologies Inc.
26496 1.85 GoDaddy.com, LLC
13335 1.63 CloudFlare, Inc.
20940 1.42 Akamai Technologies, Inc.
8075 1.36 Microsoft Corp

Table 4.17: Top 10 ASes for short-lived destination IPs, irrespective of source IP, for a one-week
sliding window (May 8-14).

ASN Percentage Organization
14618 14.89 Amazon.com, Inc.

0 8.74 private IP space
16509 8.26 Amazon.com, Inc.
15169 5.97 Google Inc.
8075 3.49 Microsoft Corp
36351 2.96 SoftLayer Technologies Inc.
7922 2.61 Comcast Cable Communications, Inc.
20940 1.68 Akamai Technologies, Inc.
2914 1.56 Akamai Technologies, Inc. & NTT America, Inc.
29990 1.49 AppNexus, Inc

Table 4.18: Top 10 ASes for long-lived (more than 5 days) destination IPs, irrespective of source
IP, for a one-week sliding window (May 8-14).

80

Type ASN Organization src/dst dst-only

SL

15169 Google Inc. 7.68% 1.04%
29990 AppNexus, Inc 3.50% 0.13%
3356 Level 3 Communications, Inc. 1.58% 0.48%

0 private IP space 3.55% 1.17%
26496 GoDaddy.com, LLC 0.31% 1.85%
13335 CloudFlare, Inc. 0.59% 1.63%

LL

2152 California State University Network 13.42% 0.51%
15133 EdgeCast Networks, Inc. 3.26% 0.69%
7922 Comcast Cable Communications, Inc. 1.76% 2.61%

29990 AppNexus, Inc 0.60% 1.49%

Full

2152 California State University Network 3.91% 0.28%
29990 AppNexus, Inc 2.65% 0.80%
3356 Level 3 Communications, Inc. 1.73% 0.65%

0 private IP space 1.48% 4.33%
7922 Comcast Cable Communications, Inc. 1.66% 3.03%

33070 Rackspace Hosting 0.40% 1.25%

Table 4.19: Differences between src/dst pairs and dst-only with the short-lived, long-lived, and
full Top 10 AS lists (May 8-14).

4.6.3 Comparison of src/dst and dst-only Top-ten ASes

The final comparison is between the most common Autonomous System (AS)es for src/dst
pairs, and dst IPs only, irrespective of source. As seen in Table 4.19, the biggest differences
in each category are Google for SL ASes, and the CSU Network for the LL and the full list of
ASes. The differences here are likely due to the fact that the list of IPs used to build the AS
lists are unique src/dst pairs and unique dst IPs. For example, as NPS is on the CSU Network,
one would expect the CSU AS to be regularly visited by most, if not all, users. However, if
NPS only has a few IPs (compared to Google or Amazon), then there would be fewer unique
IPs that would point to the CSU AS. Thus, if most users visit the exact same NPS IP on a
near-daily basis, it would have a high AS percentage under the src/dst method, which it did, at
13.42%. However, since (in this notional example) there was only one IP being visited, the lack
of variety in IPs would lead to a low AS percentage when using the dst-only approach, which,
at 0.51%, was likewise the case in our study. This same reasoning would explain why Google
accounted for 15.51% of the src/dst AS, but 5.97% for the dst-only method. That 5.97% is
still rather high might reflect that Google has many different IPs with which to provide its very
popular services.

81

Flow Traffic (Unfiltered)
Test Day mean median mode mode cnt features sources

NB

Thu 459 242 0 4 11,381 162
Fri 336 228 319 4 10,478 128
Sat 124 77 2 4 3,362 86
Sun 94 50 4 3 2,585 107
Mon 593 305 0 2 11,775 64
Tue 271 241 35 3 11,900 157

Tree

Thu 227 109 0 10 11,381 40
Fri 230 83 0 8 10,478 33
Sat 56 9 0 13 3,362 28
Sun 98 30 0 13 2,585 46
Mon 565 197 0 8 11,775 30
Tue 512 79 0 33 11,900 38

KNN

Thu 137 20 0 27 11,381 59
Fri 171 19 0 16 10,478 40
Sat 41 9 0 11 3,362 30
Sun 40 6 0 33 2,585 81
Mon 234 5 0 31 11,775 65
Tue 148 4 0 33 11,900 69

Table 4.20: Flow - mean, median, mode, mode count of the maximum number of features that
can be changed and still correctly identify the source IP. Also shown are the total number of
features and the number of sources that were originally correctly predicted (May 8-14).

It can also be seen from Table 4.19 that Google accounted for 7.68% of SL src/dst ASes, but
only 1.04% of dst-only AS. This difference is possibly due to many users accessing an IP on
the Google AS for a single network session. If those same users visited IPs belonging to many
other ASes, the variety in those other SL accesses could explain why Google was not higher on
the list of dst-only SL ASes.

4.7 Profile Strength
In this analysis, we tested the whether our user network behavior profiles would detect abnormal
user behavior which might indicate malicious or otherwise inappropriate activity. Due to time
constraints, we only tested profiles relying on destination IPs, not those profiles using DNS
queries. The abnormal network behavior was simulated by modifying the fields in the tab files
(§3.5) to indicate different values for the number of times each source sent a SYN packet to
a particular destination IP. As the tab file headers contained columns for every destination IP
visited by every source during the training or testing period, the majority of destination IPs

82

for a given source had observed values of zero, indicating that the source did not send any
SYN packets to those IP addresses. Thus, while we were not able to inject completely unseen
destination IPs into the tab file, this method was sufficient for the purpose of simulating network
activity that was abnormal.

In §4.4, §4.4.4, and §4.5, we computed user identification accuracies using Orange’s NB, Clas-
sification Tree, and KNN modules. Using those results, we identified the source IPs that were
correctly identified by at least one of the classifiers. For each correctly identified source, we
changed the value of a randomly selected feature to a random number between 0 and 30). The
purpose was to simulate the situation of Bob using Alice’s computer. That is, the source IP was
the same, but the real user and, hence, the network behavior, was different. After changing the
value of the feature, we then assessed whether Orange would return the same (previously cor-
rect) prediction for the class. If the prediction was still for Alice, we changed another randomly
selected feature to a random value between 0 and 30, and had Orange make another predic-
tion. If the prediction returned a different source (any source other than Alice), we recorded the
number of features that we were able to change before the predicted source was different.

If more than 50 features can be changed and still allow Orange to correctly identify the sources,
we considered those profiles to be strong, as they were able to absorb changes. If changing only
fewer than 50 features caused sources to be misidentified, we regarded those profiles as being
weak, since they failed with only minor deviations in behavior.

For the case of Bob using Alice’s computer without her knowledge, it would be better for Bob if
the profiles tended to have high (more than 50) median values, as this would imply that at least
half of the profiles would still predict Alice if Bob limited his network accesses. Recall from
§4.4 and §4.4.4 that as the filters became more stringent, the numbers of destinations in the
datasets decreased significantly. For the datasets using IP destinations, the mean of the number
of destinations visited in the unfiltered sets was 9,046 (for all sources combined). After a long-
lived filter using a six-day lifetime was applied to src/dst pairs, the mean destination IPs fell to
2,213. There were only 1,721 dst IPs in the at least 5 days analysis, and 1,187 dst IPs in the at

least 6 days tests. The increase in our identification accuracy came at the cost of having fewer
source and destination IPs in our datasets.

Tables 4.20, 4.21, 4.22, and 4.23 show the mean, median, and mode for the maximum number
of features that we were able to change and still return a correct prediction in Orange, when
considering all initially correctly predicted sources. We also included the count for the mode,

83

the total number of features in each test set, and the number of source IPs that were originally
correctly identified. As can be seen in the Tables, the mean tends to be considerably higher than
the mode, even in case where the mode is low and the mode count is high. For example, in
Table 4.23, when just the training set is filtered in the at least 6 days tests, the KNN values on
Tuesday show a mode of 0, a mode count of 30 (out of 76 sources), but a mean of 192. That
the mean is so much higher than the mode indicates that there are some outliers in terms of how
many destination IPs we were able to change and still have Orange predict the originally correct
source. It can also be seen that, when using KNN, each day had a mode of 0, with mode counts
that were between 29% and 50% of the tested sources, with a mean of 40.4%. The implies
that for about 40% (on average) of the sources changing the number of visits for just one of the
destination IPs resulted in a different prediction for the source. For these sources, it would be
quite difficult for an adversary to subvert those identities without being detected. :CM EDITED

When filtering for src/dst pairs that were observed on at least six different days during the
week, KNN returned a mean accuracy of 54.3%, and 34.5% for the LL analysis using a lifetime
of six days. Comparing Tables 4.21 and 4.23, we see that the mean features (that could be
changed and still allow sources to be correctly identified) decreased considerably for the KNN
classier, and the median values became zero for each day of the week. The mode for both
analyses was zero, but with the at least 6 days analysis, the mode count was usually quite higher,
accounting for over half the sources. For the NB classifier, the comparison was similar, albeit
less dramatic. The mean and median values usually decreased, indicating that fewer changes
could be absorbed. The mode actually increased, though the mode counts were sufficiently
small, so the fact that the modes increased is not very significant.

Perhaps a better comparison would be KNN and NB from the analysis using a six-day LL filter,
since the accuracies were similar (NB had 34.8% and KNN yielded 34.5%). As can be seen in
Table 4.21, NB has significantly higher mean and median values. Additionally, the mode values
for NB, while not high, are also usually greater than zero, and also have a small mode count.
Thus, we could say that the profile is stronger when using the NB classifier than when using
KNN, as more features could change and still result in a correct identification.

84

Data Test Day mean median mode mode cnt features sources

NB

Thu 937 349 11 1 11,381 64
Fri 872 278 5 2 10,478 68
Sat 128 83 88 3 3,362 56
Sun 164 79 0 3 2,585 76
Mon 1,250 527 11 1 11,775 35
Tue 895 396 77 2 11,900 87

Tree

Thu 648 240 0 6 11,381 27
Flow Data: Fri 419 102 0 6 10,478 22

LL Filter Sat 215 54 0 4 3,362 32
> 6 days Sun 99 49 0 8 2,585 36
Train Set Mon 339 147 0 6 11,775 23

Tue 372 120 0 10 11,900 34

KNN

Thu 156 28 0 25 11,381 65
Fri 259 2 0 28 10,478 56
Sat 74 6 0 28 3,362 60
Sun 51 3 0 38 2,585 79
Mon 287 59 0 25 11,775 76
Tue 424 79 0 45 11,900 137

Data Test Day mean median mode mode cnt features sources

NB

Thu 170 51 1 6 2,490 156
Fri 156 66 0 6 2,295 146
Sat 58 35 4 6 1,276 81
Sun 65 32 7 5 1,214 106
Mon 146 73 5 3 2,375 74
Tue 191 76 2 8 3,218 202

Tree

Thu 74 33 0 17 2,490 67
Flow Data: Fri 84 39 0 15 2,295 59

LL Filter Sat 71 28 0 14 1,276 49
> 6 days Sun 62 23 0 19 1,214 68

Train/Test Mon 199 67 0 8 2,375 45
Tue 109 30 0 33 3,218 89

KNN

Thu 53 7 0 56 2,490 134
Fri 57 11 0 37 2,295 91
Sat 30 6 0 30 1,276 81
Sun 32 0 0 60 1,214 114
Mon 66 8 0 43 2,375 108
Tue 88 10 0 100 3,218 231

Table 4.21: Flow: statistics for the max number of features that can change and still result in a
correct source identification, retaining only LL sources with sliding-window lifetimes > 6 days.
Also shown are total number of features and number of sources that were originally identified.

85

Data Test Day mean median mode mode cnt features sources

NB

Thu 1,193 382 50 2 11,381 55
Fri 1,089 275 13 2 10,478 83
Sat 167 100 47 3 3,362 78
Sun 130 69 1 3 2,585 92
Mon 1214 313 39 2 11,775 47
Tue 987 320 24 2 11,900 80

Tree

Thu 623 333 0 5 11,381 42
Flow Data: Fri 491 184 0 11 10,478 55
≥ 5 diff Sat 160 82 0 12 3,362 47

days Sun 145 56 0 17 2,585 59
Train Set Mon 463 241 0 6 11,775 33

Tue 362 160 0 12 11,900 43

KNN

Thu 477 87 0 36 11,381 107
Fri 234 55 0 39 10,478 134
Sat 96 3 0 51 3,362 113
Sun 62 2 0 60 2,585 125
Mon 372 47 0 37 11,775 100
Tue 483 95 0 29 11,900 107

Data Test Day mean median mode mode cnt features sources

NB

Thu 137 45 1 8 1,873 179
Fri 129 42 0 10 1,883 177
Sat 78 38 1 5 1,374 101
Sun 77 37 10 5 1,380 124
Mon 130 64 0 5 1,892 99
Tue 119 39 0 10 1,847 199

Tree

Thu 64 22 0 31 1,873 89
Flow Data: Fri 67 33 0 30 1,883 99
≥ 5 diff Sat 45 23 0 13 1,374 58

days Sun 76 36 0 24 1,380 96
Train/Test Mon 133 61 0 13 1,892 60

Tue 60 28 0 37 1,847 11

KNN

Thu 63 5 0 89 1,873 204
Fri 51 9 0 87 1,883 211
Sat 27 2 0 58 1,374 130
Sun 29 0 0 92 1,380 158
Mon 44 3 0 77 1,892 158
Tue 40 0 0 107 1,847 213

Table 4.22: Flow: statistics for the max number of features that can change and still result in a
correct source identification, retaining only sources active for ≥ 5 days. Also shown are total
number of features and number of sources that were originally identified.

86

Data Test Day mean median mode mode cnt features sources

NB

Thu 926 458 0 1 11,381 31
Fri 1,084 535 26 2 10,478 44
Sat 305 140 2 2 3,362 74
Sun 177 100 5 2 2,585 74
Mon 1,016 531 26 2 11,775 46
Tue 1,135 506 0 1 11,900 43

Tree

Thu 536 226 0 5 11,381 34
Flow Data: Fri 413 163 0 10 10,478 32
≥ 6 diff Sat 206 106 0 41 3,362 65

days Sun 142 46 0 12 2,585 52
Train Set Mon 935 162 0 6 11,775 30

Tue 540 285 0 6 11,900 32

KNN

Thu 313 60 0 29 11,381 82
Fri 220 24 0 40 10,478 91
Sat 69 0 0 57 3,362 114
Sun 52 4 0 51 2,585 115
Mon 347 150 0 27 11,775 92
Tue 192 42 0 30 11,900 76

Data Test Day mean median mode mode cnt features sources

NB

Thu 75 42 44 4 1,205 110
Fri 74 27 4 6 1,201 125
Sat 76 33 11 6 1,190 115
Sun 75 48 6 5 1,188 109
Mon 88 48 0 4 1,210 106
Tue 86 45 1 5 1,171 119

Tree

Thu 72 30 0 16 1,205 69
Flow Data: Fri 65 35 0 19 1,201 84
≥ 6 diff Sat 52 24 0 22 1,190 90

days Sun 72 36 0 25 1,188 93
Train/Test Mon 62 16 0 33 1,210 89

Tue 43 26 0 27 1,171 95

KNN

Thu 16 0 0 77 1,205 143
Fri 21 0 0 90 1,201 156
Sat 14 0 0 91 1,190 160
Sun 24 0 0 92 1,188 149
Mon 25 0 0 99 1,210 172
Tue 30 0 0 94 1,171 162

Table 4.23: Flow: statistics for the max number of features that can change and still result in a
correct source identification, retaining only sources active for ≥ 6 days. Also shown are total
number of features and number of sources that were originally identified.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

CHAPTER 5:
Conclusions and Future Work

This thesis sought to investigate user network behavior profiles that associate a particular source
IP address with the number of visits to unique destination IPs, and whether such profiles can be
applied to network traffic from an academic building at NPS to identify network users. Further,
how would using datasets containing DNS queries compare with datasets containing destination
IPs, in terms of identification accuracy.

Others, such as Banse et al. [5] and Yang [6] had achieved success in using DNS and destination
IPs for user identification, but both involved home users or residential housing at a university.
We wanted to investigate how these techniques would fare on data that more closely approx-
imates a government or corporate office. User network behavior differs based on the user’s
location [17], and it makes sense that traffic from an office building might contain fewer unique
markers, as users may regularly perform network activity while at home, but may do so less
often while at work. While traffic from the Computer Science Department at NPS is not a per-
fect replacement for traffic from a government or corporate office, we believe it is a reasonable
substitute, at least for initial analyses.

We began by collecting pcaps of network traffic from the Computer Science Department at NPS,
separating the pcaps into DNS traffic and IP flow traffic. We parsed the pcaps using C++ with
libpcap, extracting the source IPs and destination IPs from the flow data, and used C++ maps
to keep track of the number of times each source IP issued a TCP SYN for each destination IP,
within the course of a 24-hour period. After performing tf-idf on the numbers of SYNs issued
by each source, we formatted and wrote the information to a “tab” file. The tab files were
used as input for the data-mining software package Orange [20], which computed accuracies
using NB, Classification Tree, and KNN. The procedure was repeated for the DNS datasets,
except that instead of recording number of SYNs, we recorded the number of times each source
IP issued a DNS request containing a particular QNAME. We also analyzed the performance
when cropping the DNS hostnames, to see if focusing on just the parent domain would affect
the identification accuracies.

89

5.1 Conclusions
The results of our analysis indicate that identification of users based on network traffic is ap-
plicable to NPS data, although the accuracy results are lower than when considering residential
networks. The results further imply that using DNS queries can yield higher accuracy results
than using destination IPs, as was the case for every test we performed. For both the NB and
KNN classifiers, the DNS queries returned between 20-25% higher accuracy than using desti-
nation IPs, when training on one day and testing on the next.

We also calculated the longevity of an IP flow or DNS query, based on the lifetime of the access,
i.e., when the access was first seen and when it was last seen, over the course of a week. We
then created CDFs of these lifetimes. Analysis of the CDFs indicates that roughly half of all
TCP SYNs from a given source IP were only issued during a single network session, and were
never issued again during the following seven-day period by that same source. Over half of
the DNS queries issued by a given source were never queried again by that source in the next
seven days. Roughly 40% of all TCP SYNs in the dataset were never sent again by any source
during the seven days following the initial web visit 60% of all DNS queries were only issued
during a single network session, and were never issued again by any source over the next seven
days. About 10% of SYNs were regularly issued by the same source over the course of seven
days. Similarly, about 10% of DNS queries were regularly issued by the same source over the
seven-day period. Approximately 30% of SYNs were regularly issued by at least one source for
at least seven days during the assessment period. About 10% of the DNS queries issued by any
source were regularly issued again by at least one source during the next seven days.

Lifetime Filters. On unfiltered datasets, training on one day and testing on the immediately
following day, the NB classifier returned mean accuracies of 27.1% for IP flow data, 46.5% for
DNS data, and 43.4% for the modified DNS data. The KNN classifier yielded means of 13.5%
for flow data, 30.9% for DNS, and 40.0% for the modified DNS data. For unfiltered datasets,
using DNS returned significantly higher identification accuracies than IP flow data. The DNS
hostname cropping technique resulted in slightly lower accuracies for NB, but significantly
higher results for KNN, though the KNN scores were still lower than NB for these tests.

Short-lived Filters. When the very short-lived accesses were removed from the datasets, the
identification accuracies for flow and DNS datasets improved. The largest gains occurred when
both the training and test sets were filtered to omit short-lived source/destination IP pairs or
source IP/DNS hostname query pairs. NB returned accuracies of 33.8% for flow data, 52.0%

90

for DNS, and 47.6% for modified DNS. The KNN classifier achieved 18.6% for flow, 39.2%
for DNS, and 44.8% for the modified DNS. As with the unfiltered datasets, we saw the NB
was the more accurate than KNN, and that KNN had a larger increase in accuracy when using
the modified DNS. When omitting short-lived src/dst pairs or src/hostname pairs from just the
training set, the increases were still present, but were more slight for NB, though KNN still re-
tained an 8.3% increase for DNS. Tests that omitted short-lived destination IPs or DNS queries,
irrespective of source IP, did not have any significant effect on accuracy for any of the classifiers
we used.

Long-lived Filters. We also created datasets in which only the long-lived accesses were re-
tained. Our definition of “long-lived” was those accesses having a lifetime of at least six days.
We then reran the trials using five days as the threshold for being considered long-lived. The
accuracies for all classifiers increased dramatically when filtering both training set and test set
for src/dst pairs or src/hostname pairs using threshold of six days. For these tests, NB returned
mean accuracies of 34.8% for flow data, 59.4% for DNS data, and 54.6% for modified DNS.
The KNN classifier performed quite well, yielding 34.5% for flow data, 59.5% for DNS data,
and 63.1% for modified DNS. Interestingly, when only the training sets were filtered, the ac-
curacies often decreased significantly as compared to the short-lived analysis. This seems to
imply that there are SYNs and DNS queries that are useful for identification on a day-to-day
scale, but that may not persist over the course of a week. The cost of the increased accuracy
was that fewer source IPs were present in the filtered datasets, which means that many source
IPs were not able to be classified.

At Least X Days. Another version of filters we explored were those that looked at the number
of different days during the week a particular destination IP or DNS query was observed. When
filtering both training and test sets for src/dst or src/host pairs that were active for X days,
the largest gains for flow data occurred when X = 5 for NB (42.7%), and X = 6 (54.3%) for
KNN. For DNS data, the maximum accuracies were with X = 6 for both NB (69.6%) and KNN
(86.5%). With datasets containing the modified DNS hostnames, the results were similar to the
unmodified DNS. As with the filters using lifetimes, the cost of this increased accuracy was
that the number of source IPs in the datasets decreased as the filters became more stringent.
The implication is that are are some sources that engage in somewhat regular network behavior,
which can aid in the identification of those particular sources.

91

Multiple Daily Filters. The final version of tests involved using multiple daily instances (MDI)
in the training set, but still testing on the immediately following day. For unfiltered MDI, the
highest accuracies were from the Classification Tree with training sets consisting of four days.
The Tree classifier returned accuracies of 40% for IP flow data, 76.5% for DNS, and 75.9%
for modified DNS. When filtering the datasets to only retain long-lived access, we again saw
that the largest gains were when both training and testing sets were filtered for src/dst pairs or
source/hostname pairs. KNN yielded the highest accuracies, with six days in the training set,
achieving 71.9% accuracy for flow data, 90.1% for DNS, and 87.9% for modified DNS.

AS Statistics. We also looked at the ASNs for the flow data, comparing the popularity of the
ASs for all destination IPs, just the very short-lived destination IPs, and just the very long-lived
destination IPs. Our findings indicated that the large ASs, such as Amazon, Google, Microsoft,
and Akamai, were some of the most common ASs, regardless of whether we considered short-
lived, long-lived, or all accesses.

Profile Strength. Lastly, we explored the strength or weakness of the profiles, for selected anal-
yses, by looking at the maximum number of features that could be changed and still correctly
identify the source. While more testing should be done on this, our initial findings seem to
suggest that for our profiles, NB was able to produce more resilient profiles than KNN.

5.2 Future Work
This thesis provided some groundwork for manipulating user network behavior profiles, and
demonstrated that certain techniques can be applied to non-residential data, such as traffic from
an academic department at NPS. There is clearly much more work to be done in this field.

User to Source IP Correlation. It is likely that ephemeral source IPs played a role in lowering
our accuracy. Some of these source IPs certainly would have changed over the course of the
week we were observing. Additionally, the the lists of short-lived and long-lived src/dst and
src/hostname pairs to either omit or retain were created using a one-week sliding window, which
means that the whole period covered by the sliding windows was a two-week period. It is
possible that a significant number of source IPs changed during that period. If a user visited
a destination regularly during the two week period, but the user’s source IP changed, then that
src/dst pair might register a lower lifetime than it would have. It would be interesting to correlate
(and anonymize) users to the source IPs, accounting for changes in the IPs, to see what effect
this has on accuracy.

92

The short-lived lifetimes, however, were likely not affected too much by ephemeral IPs. The
SL lifetimes were considerably small, so the ephemeral IPs would have had to change very
frequently to significantly affect the results. It is possible that a user could have accessed a
destination during one session, and then returned to that destination later, but with a different
source IP. In that case, we would have incorrectly identified and omitted one SL src/dst pair,
and retained a different src/dst pair (but the same user), but with a shorter lifetime. While we do
not believe such a case would have a significant effect on identification accuracy, the only way
to know would be with source IP to user correlation.

Refine Threshold for Short-lived and Long-lived Lifetimes. There are also variations that
could be done on our definition of long-lived and short-lived. Our short-lived lifetimes were
all less than 25 minutes, as we wanted to focus on accesses that were performed only during a
short network session, and then never repeated. It might be useful to increase the time for an
access to be short-lived. For example, accesses with lifetimes of less than a day might not be
included in both a training set and a test set, and so are just noise. Additionally, our long-lived
lifetimes of six days and, subsequently, five days, might be too stringent. If a source makes the
same network access for four days in a row, takes a three day break, and then makes the same
access again, a five-day threshold would miss this activity. It might be interesting to combine
the idea of long-lived accesses with the number of times in a week a destination was accessed.
For our analysis, these methods were separate.

Conduct Further Testing with MDI. More complete tests with the multiple daily instances
could be performed. Due to limited time, we were only able to create and analyze selected
data. A two-day training set was always Wednesday and Thursday, a three-day training set was
always Wednesday, Thursday, and Friday, and so on. It would be interesting to see the results
of training on every two adjacent days.

Enhanced DNS Hostname Cropping. There are also enhancements that could be made to the
DNS modifications, in which we cropped the hostname from the QNAME field. In particular,
it might be possible to focus on hostnames that were likely issued by a user. Perhaps a more
realistic goal would be to omit many of the DNS queries that were automatically sent from an
advertisements, embedded URLs, or DNS Prefetching. One method might be to identify and
remove queries containing CDN domains, such edgekey.net or edgesuite.net, that indicate
the Akamai CDN. It is unlikely that a user would issue a query for such a hostname. The po-
tential pitfall with this technique would be that if a user regularly visits a website that generates

93

such DNS queries, those queries might themselves help identify the source. Additionally, some
DNS queries that are sent as a result of DNS Prefetching have forms that are not unlike normal
user DNS queries.

With both the modified and unmodified DNS queries, the types of queries we focused on were
A, AAAA, TXT, SRV, and MX records, thinking that these types might reveal uniqueness in
user DNS requests. It might be useful to look at just A records, or other variations to see if there
is any effect on identification accuracy.

Omit Uncommon Sources and Destinations. Finally, perhaps it would be of value to omit
destination IPs and DNS queries from the test set, if those IPs and queries are not present in
both the training set. A destination IP or DNS query that is not on both the training and test set
is not likely to contribute to the classification.

Conduct Further Tests of Profile Strength. The best performing profiles in our analyses were
those created with DNS queries. Due to time constraints, we were not able to test how strong
those DNS profiles were. It would be interesting to see if those more accurate DNS profiles
were also more resilient.

94

REFERENCES

[1] E. Orimo, H. Koike, T. Masui, and A. Takeuchi, “Analysis and Evaluation of Recommen-
dation Systems,” in Proc. of the 2007 conf. on Human interface: Part I, Beijing, China,
2007, pp. 144–152.

[2] J. Geary. (2012, April 23) DoubleClick (Google): What is it and what does it
do? Guardian. [Online]. Available: http://www.theguardian.com/technology/2012/apr/
23/doubleclick-tracking-trackers-cookies-web-monitoring

[3] G. Greenwald, E. MacAskill, and L. Poitras. (2013, June 9) Ed-
ward Snowden: The whistleblower behind the NSA surveillance revela-
tions. Guardian. [Online]. Available: http://www.guardian.co.uk/world/2013/jun/09/
edward-snowden-nsa-whistleblower-surveillance

[4] C. Savage. (2013, Feb. 28) Soldier Admits Providing Files to WikiLeaks.
New York Times. [Online]. Available: http://www.nytimes.com/2013/03/01/us/
bradley-manning-admits-giving-trove-of-military-data-to-wikileaks.html

[5] C. Banse, D. Herrmann, and H. Federrath, “Tracking users on the internet with behavioral
patterns: Evaluation of its practical feasibility.” in SEC, ser. IFIP Advances in Inform.
and Commun. Technology, D. Gritzalis, S. Furnell, and M. Theoharidou, Eds., vol. 376.
Heraklion, Greece: Springer, 2012, pp. 235–248.

[6] Y. C. Yang, “Web user behavioral profiling for user identification,” Decis. Support Syst.,
vol. 49, no. 3, pp. 261–271, June 2010.

[7] F. L. Greitzer, L. J. Kangas, C. F. Noonan, A. C. Dalton, and R. E. Hohimer, “Identifying
At-Risk Employees: Modeling Psychosocial Precursors of Potential Insider Threats,” in
Proc. of the 2012 45th Hawaii Int. Conf. on System Sciences, ser. HICSS ’12. IEEE
Comput. Society, 2012, pp. 2392–2401.

[8] CSO Magazine, USSS, CERT, and Deloitte, “2011 CyberSecurity Watch Survey,” CERT
Program, Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, 2011.

[9] P. Reidy and K. Randal, “Combating the Insider Threat: Real World Lessons,” presented
at the RSA Conf. 2013, San Francisco, CA, 2013.

95

[10] G. Silowash, D. Cappelli, A. Moore, R. Trzeciak, T. J. Shimeall, and L. Flynn, “Common
Sense Guide to Mitigating Insider Threats,” CERT Program, Software Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU/SEI-2012-TR-012, Dec. 2012.

[11] A. P. Moore, M. Hanley, and D. Mundie, “A Pattern for Increased Monitoring for Intellec-
tual Property Theft by Departing Insiders,” CERT Program, Software Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU/SEI-2012-TR-008, April 2012.

[12] W. R. Claycomb, C. L. Huth, L. Flynn, D. M. McIntire, and T. B. Lewellen, “Chrono-
logical Examination of Insider Threat Sabotage: Preliminary Observations,” J. of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applicat. (JoWUA), vol. 3,
no. 4, pp. 4–20, Dec. 2012.

[13] A. Cummings and R. Trzeciak, “Insider Threats and Security Trends: Lessons Learned
from Actual Insider Attacks,” CERT Program, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, PA, 2010.

[14] J. Klensin, “Role of the Domain Name System (DNS),” RFC 3467 (Informational),
Internet Eng. Task Force, Feb. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3467.
txt

[15] P. V. Mockapetris, “Domain Names - Implementation and Specification,” RFC 1035
(INTERNET STANDARD), Internet Eng. Task Force, Nov. 1987. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[16] D. Herrmann, C. Gerber, C. Banse, and H. Federrath, “Analyzing characteristic host access
patterns for re-identification of web user sessions,” in Proc. of the 15th Nordic Conf. on

Inform. Security Technology for Applicat., Espoo, Finland, 2012, pp. 136–154.

[17] F. Giroire, J. Chandrashekar, G. Iannaccone, K. Papagiannaki, E. M. Schooler, and N. Taft,
“The cubicle vs. the coffee shop: behavioral modes in enterprise end-users,” in Proc. of

the 9th Int. Conf. on Passive and Active Network Measurement, Cleveland, OH, 2008, pp.
202–211.

[18] S. McKinney and D. S. Reeves, “User identification via process profiling: extended ab-
stract,” in Proc. of the 5th Annu. Workshop on Cyber Security and Inform. Intell. Research:

Cyber Security and Inform. Intell. Challenges and Strategies, Oak Ridge, TN, 2009, pp.
51:1–51:4.

96

[19] A. Udoeyop, “Cyber Profiling for Insider Threat Detection,” M.S. thesis, Dept. Comput.
Sci., Univ. of Tennessee, Knoxville, Aug. 2010.

[20] J. Demšar, B. Zupan, G. Leban, and T. Curk, “Orange: From Experimental Machine
Learning to Interactive Data Mining,” in Proc. of the 8th European Conf. on Principles

and Practice of Knowledge Discovery in Databases. Faculty of Comput. and Inform.
Science, Univ. of Ljubljana, 2004, pp. 537–539.

[21] A. Gulbrandsen and P. Vixie, “A DNS RR for specifying the location of services
(DNS SRV),” RFC 2052 (Experimental), Internet Eng. Task Force, Oct. 1996. [Online].
Available: http://www.ietf.org/rfc/rfc2052.txt

[22] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi, “DNS Extensions to Support IP
Version 6,” RFC 3596 (Draft Standard), Internet Eng. Task Force, Oct. 2003. [Online].
Available: http://www.ietf.org/rfc/rfc3596.txt

[23] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New
York, NY: Cambridge Univ. Press, 2008.

[24] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools

and Techniques, 2nd ed. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2005.

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Upper
Saddle River, NJ: Prentice Hall Press, 2009.

[26] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,”
in Proc. of the 2007 Conf. on Emerging Artificial Intell. Applications in Comput. Eng.:

Real Word AI Syst. with Applicat. in eHealth, HCI, Inform. Retrieval and Pervasive Tech-

nologies, 2007, pp. 3–24.

[27] J. Demšar, B. Zupan, G. Leban, and T. Curk, “Orange Documentation v2.7.1,” http://
orange.biolab.si/docs/latest.

[28] C. O’Neil. (2013, April 4) K-Nearest Neighbors: Dangerously Simple. [Online].
Available: http://mathbabe.org/2013/04/04/k-nearest-neighbors-dangerously-simple/

[29] E. Cohen and H. Kaplan, “Prefetching the means for document transfer: A new approach
for reducing Web latency,” Comput. Networks, vol. 39, no. 4, pp. 437 – 455, 2002.

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

Referenced Authors

Banse, Christian 2, 7, 8, 18–21,

89

Cappelli, Dawn 5

CERT 5

Chandrashekar, Jaideep 8, 89

Claycomb, William R. 6

Cohen, Edith 31

CSO Magazine 5

Cummings, Adam 6

Curk, T. 13, 17, 21, 22, 35, 89

Dalton, A. C. 5

Deloitte 5

Demšar, J. 13, 17, 21, 22, 35, 89

Federrath, Hannes 2, 7, 8,

18–21, 89

Flynn, Lori 5, 6

Frank, Eibe 18

Geary, Joanna 1

Gerber, Christoph 8

Giroire, Frédéric 8, 89

Greenwald, Glenn 1

Greitzer, F. L. 5

Gulbrandsen, A. 15

Hall, Mark A. 18

Hanley, Michael 6

Herrmann, Dominik 2, 7, 8,

18–21, 89

Hohimer, R. E. 5

Huitema, C. 15

Huth, Carly L. 6

Iannaccone, Gianluca 8, 89

Kangas, L. J. 5

Kaplan, Haim 31

Klensin, J. 6

Koike, Hideki 1

Kotsiantis, S. B. 21

Ksinant, V. 15

Leban, G. 13, 17, 21, 22, 35, 89

Lewellen, Todd B. 6

MacAskill, Ewen 1

Manning, Christopher D. 18

Masui, Toshiyuki 1

McIntire, David M. 6

McKinney, Steve 10

Mockapetris, Paul V. 6, 7, 15

Moore, Andrew 5

Moore, Andrew P. 6

Mundie, David 6

Noonan, C. F. 5

Norvig, Peter 21, 22

O’Neil, Cathy 22

Orimo, Emiko 1

Papagiannaki, Konstantina 8, 89

Poitras, Laura 1

Raghavan, Prabhakar 18

Randal, Kate 5

Reeves, Douglas S. 10

Reidy, Patrick 5

Russell, Stuart 21, 22

Savage, Charlie 2

Schooler, Eve M. 8, 89

Schütze, Hinrich 18

Shimeall, Timothy J. 5

Silowash, George 5

Souissi, M. 15

Taft, Nina 8, 89

Takeuchi, Akikazu 1

Thomson, S. 15

Trzeciak, Randall 5, 6

Udoeyop, Akaninyene 10, 21

USSS 5

Vixie, P. 15

Witten, Ian H. 18

Yang, Yinghui (Catherine) 2, 9,

10, 21, 89

Zupan, B. 13, 17, 21, 22, 35, 89

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

101

